Acoustic Emission Monitoring of Thermal Cycling in Salt at the Waste Isolation Pilot Plant
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Presented in this document is a small portion of the tests that exist in the Sierra/SolidMechanics (Sierra/SM) verification test suite. Most of these tests are run nightly with the Sierra/SM code suite, and the results of the test are checked versus the correct analytical result. For each of the tests presented in this document, the test setup, a description of the analytic solution, and comparison of the Sierra/SM code results to the analytic solution is provided. Mesh convergence is also checked on a nightly basis for several of these tests. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems. Additional example problems are provided in the Sierra/SM Example Problems Manual. Note, many other verification tests exist in the Sierra/SM test suite, but have not yet been included in this manual.
Abstract not provided.
Abstract not provided.
Journal of the American Society for Mass Spectrometry
Although mass spectrometry is a widely used analytical tool, age-appropriate, interactive outreach activities for laboratory visitors, especially children, are lacking. The presented interactive demonstration, "Did you eat a MOLEcule today?", introduces all ages to molecular weight concepts and mass spectrometry in a research laboratory, while connecting the concepts to real-world applications. Through real-time breath analysis, participants explore the concepts of molecular weight, electrostatic field manipulation of charged molecules, and analyte identification by mass analysis. This module is rapid and highly adaptable for outreach activities but also includes age- or classroom-appropriate variations to decrease or increase difficulty levels. The presented interactive demonstration has repeatedly been implemented, with over 2300 participants during six annual "Take Our Daughters & Sons to Work Day" and two corporate "Family Day" outreach activities, successfully engaging, exciting, and educating both kids and parents.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physics of Fluids
For decades, it has been observed that the commonly used Borgnakke-Larsen method for energy redistribution in Direct Simulation Monte Carlo codes fails to satisfy the principle of detailed balance when coupled to a wide variety of temperature dependent relaxation models, while seemingly satisfying detailed balance when coupled to others. Many attempts have been made to remedy the issue, yet much ambiguity remains, and no consensus appears in the literature regarding the root cause of the intermittent compatibility of the Borgnakke-Larsen method with temperature dependent relaxation models. This paper alleviates that ambiguity by presenting a rigorous theoretical derivation of the Borgnakke-Larsen method's requirement for satisfying detailed balance. Specifically, it is shown that the Borgnakke-Larsen method maintains detailed balance if and only if the probability of internal-energy exchange during a collision depends only on collision invariants (e.g., total energy). The consequences of this result are explored in the context of several published definitions of relaxation temperature, including translational, total, and cell-averaged temperatures. Of particular note, it is shown that cell-averaged temperatures, which have been widely discussed in the literature as a way to ensure equilibrium is reached, also fail in a similar, although less dramatic, fashion when the aforementioned relationship is not enforced. The developed theory can be used when implementing existing or new relaxation models and will ensure that detailed balance is satisfied.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This manual gives usage information for the Charon semiconductor device simulator. Charon was developed to meet the modeling needs of Sandia National Laboratories and to improve on the capabilities of the commercial TCAD simulators; in particular, the additional capabilities are running very large simulations on parallel computers and modeling displacement damage and other radiation effects in significant detail. The parallel capabilities are based around the MPI interface which allows the code to be ported to a large number of parallel systems, including linux clusters and proprietary “big iron” systems found at the national laboratories and in large industrial settings.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of the Mechanics and Physics of Solids
We present a combination of machine-learned models that predicts the surface elastic properties of general free surfaces in face-centered cubic (FCC) metals. These models are built by combining a semi-analytical method based on atomistic simulations to calculate surface properties with the artificial neural network (ANN) method or the boosted regression tree (BRT) method. The latter is also used to link bulk properties and surface orientation to surface properties. The surface elastic properties are represented by their invariants considering plane elasticity within a polar method. The resulting models are shown to accurately predict the surface elastic properties of seven pure FCC metals (Cu, Ni, Ag, Au, Al, Pd, Pt). The BRT model reveals the correlations between bulk and corresponding surface properties in terms of invariants, which can be used to guide the design of complex nano-sized particles, wires and films. Finally, by expressing the surface excess energy density as a function of surface elastic invariants, fast predictions of surface energy as a function of in-plane deformations can be made from these model constructs.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Energies
Worldwide growth in electric vehicle use is prompting new installations of private and public electric vehicle supply equipment (EVSE). EVSE devices support the electrification of the transportation industry but also represent a linchpin for power systems and transportation infras-tructures. Cybersecurity researchers have recently identified several vulnerabilities that exist in EVSE devices, communications to electric vehicles (EVs), and upstream services, such as EVSE vendor cloud services, third party systems, and grid operators. The potential impact of attacks on these systems stretches from localized, relatively minor effects to long-term national disruptions. Fortunately, there is a strong and expanding collection of information technology (IT) and operational technology (OT) cybersecurity best practices that may be applied to the EVSE environment to secure this equipment. In this paper, we survey publicly disclosed EVSE vulnerabilities, the impact of EV charger cyberattacks, and proposed security protections for EV charging technologies.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Presented in this document are the theoretical aspects of capabilities contained in the Sierra/SM code. This manuscript serves as an ideal starting point for understanding the theoretical foundations of the code. For a comprehensive study of these capabilities, the reader is encouraged to explore the many references to scientific articles and textbooks contained in this manual. It is important to point out that some capabilities are still in development and may not be presented in this document. Further updates to this manuscript will be made as these capabilities come closer to production level.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Laser and Photonics Reviews
This article describes a calculation of the spontaneous emission limited linewidth of a semiconductor laser consisting of hybrid or heterogeneously integrated, silicon and III–V intracavity components. Central to the approach are a) description of the multi-element laser cavity in terms of composite laser/free-space eigenmodes, b) use of multimode laser theory to treat mode competition and multiwave mixing, and c) incorporation of quantum-optical contributions to account for spontaneous emission effects. Application of the model is illustrated for the case of linewidth narrowing in an InAs quantum-dot laser coupled to a high- (Formula presented.) SiN cavity.
Abstract not provided.
Abstract not provided.
Combustion and Flame
To meet stringent emissions regulations on soot emissions, it is critical to further advance the fundamental understanding of in-cylinder soot formation and oxidation processes. Among several optical techniques for soot quantification, diffuse back-illumination extinction imaging (DBI-EI) has recently gained traction mainly due to its ability to compensate for beam steering, which if not addressed, can cause unacceptably high measurement uncertainty. Until now, DBI-EI has only been used to measure the amount of soot along the line of sight, and in this work, we extend the capabilities of a DBI-EI setup to also measure in-cylinder soot temperature. This proof of concept of diffuse back-illumination temperature imaging (DBI-TI) as a soot thermometry technique is presented by implementing DBI-TI in a single cylinder, heavy-duty, optical diesel engine to provide 2-D line-of-sight integrated soot temperature maps. The potential of DBI-TI to be an accurate thermometry technique for use in optical engines is analyzed. The achievable accuracy is due in part to simultaneous measurement of the soot extinction, which circumvents the uncertainty in dispersion coefficients that depend on the optical properties of soot and the wavelength of light utilized. Analysis shows that DBI-TI provides temperature estimates that are closer to the mass-averaged soot temperature when compared to other thermometry techniques that are more sensitive to soot temperature closer to the detector. Furthermore, uncertainty analysis and Monte Carlo (MC) simulations provide estimates of the temperature measurement errors associated with this technique. The MC simulations reveal that for the light intensities and optical densities encountered in these experiments, the accuracy of the DBI-TI technique is comparable or even better than other established optical thermometry techniques. Thus, DBI-TI promises to be an easily implementable extension to the existing DBI-EI technique, thereby extending its ability to provide comprehensive line-of-sight integrated information on soot.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Science Advances
Metals subjected to irradiation environments undergo microstructural evolution and concomitant degradation, yet the nanoscale mechanisms for such evolution remain elusive. Here, we combine in situ heavy ion irradiation, atomic resolution microscopy, and atomistic simulation to elucidate how radiation damage and interfacial defects interplay to control grain boundary (GB) motion. While classical notions of boundary evolution under irradiation rest on simple ideas of curvature-driven motion, the reality is far more complex. Focusing on an ion-irradiated Pt Σ3 GB, we show how this boundary evolves by the motion of 120° facet junctions separating nanoscale {112} facets. Our analysis considers the short- and mid-range ion interactions, which roughen the facets and induce local motion, and longer-range interactions associated with interfacial disconnections, which accommodate the intergranular misorientation. We suggest how climb of these disconnections could drive coordinated facet junction motion. These findings emphasize that both local and longer-range, collective interactions are important to understanding irradiation-induced interfacial evolution.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.