Cytokines and acute-phase proteins are promising biomarkers for inflammatory disease. Despite its potential, early diagnosis based on these biomarkers remains challenging without technology enabling highly sensitive protein detection immediately after sample collection, because of the low abundance and short half-life of these proteins in bodily fluids. Enzyme-linked immunosorbent assay (ELISA) is a gold-standard method for such protein analysis, but it often requires labor-intensive and time-consuming sample handling and as well as a bulky benchtop platereader, limiting its utility in the clinical site. We developed a portable microfluidic immunoassay device capable of sensitive, quantitative, and high-throughput protein detection at point-of-need. The portable microfluidic system performs eight magnetic bead-based sandwich immunoassays from raw samples in 40 min. An innovative bead actuation strategy was incorporated into the system to automate multiple sample handling steps with minimal user intervention. The device enables quantitative protein analysis with picomolar sensitivity, as demonstrated using human samples spiked with interleukin-6 and C-reactive protein. The affinity-based assays are highly specific to the target without cross-reactivity. Therefore, we envision the reported device offering ultrasensitive and field-deployable immunoassay tests for timely and accurate clinical diagnosis.
Introduction: The SARS-CoV-2 pandemic, and the subsequent limitations on standard diagnostics, has vastly expanded the user base of Reverse Transcription Loop-mediated isothermal Amplification (RT-LAMP) in fundamental research and development. RT-LAMP has also penetrated commercial markets, with emergency use authorizations for clinical diagnosis. Areas covered: This review discusses the role of RT-LAMP within the context of other technologies like RT-qPCR and rapid antigen tests, progress in sample preparation strategies to enable simplified workflow for RT-LAMP directly from clinical specimens, new challenges with primer and assay design for the evolving pandemic, prominent detection modalities including colorimetric and CRISPR-mediated methods, and translational research and commercial development of RT-LAMP for clinical applications. Expert opinion: RT-LAMP occupies a middle ground between RT-qPCR and rapid antigen tests. The simplicity approaches that of rapid antigen tests, making it suitable for point-of-care use, but the sensitivity nears that of RT-qPCR. RT-LAMP still lags RT-qPCR in fundamental understanding of the mechanism, and the interplay between sample preparation and assay performance. Industry is now beginning to address issues around scalability and usability, which could finally enable LAMP and RT-LAMP to find future widespread application as a diagnostic for other conditions, including other pathogens with pandemic potential.
We present a field-deployable microfluidic immunoassay device in response to the need for sensitive, quantitative, and high-throughput protein detection at point-of-need. The portable microfluidic system facilitates eight magnetic bead-based sandwich immunoassays from raw samples in 45 minutes. An innovative bead actuation strategy was incorporated into the system to automate multiple sample process steps with minimal user intervention. The device is capable of quantitative and sensitive protein analysis with a 10 pg/ml detection limit from interleukin 6-spiked human serum samples. We envision the reported device offering ultrasensitive point-of-care immunoassay tests for timely and accurate clinical diagnosis.
We present a field-deployable microfluidic immunoassay device in response to the need for sensitive, quantitative, and high-throughput protein detection at point-of-need. The portable microfluidic system facilitates eight magnetic bead-based sandwich immunoassays from raw samples in 45 minutes. An innovative bead actuation strategy was incorporated into the system to automate multiple sample process steps with minimal user intervention. The device is capable of quantitative and sensitive protein analysis with a 10 pg/ml detection limit from interleukin 6-spiked human serum samples. We envision the reported device offering ultrasensitive point-of-care immunoassay tests for timely and accurate clinical diagnosis.
Introduction: Over the past decade, loop-mediated isothermal amplification (LAMP) technology has played an important role in molecular diagnostics. Amongst numerous nucleic acid amplification assays, LAMP stands out in terms of sample-to-answer time, sensitivity, specificity, cost, robustness, and accessibility, making it ideal for field-deployable diagnostics in resource-limited regions. Areas covered: In this review, we outline the front-end LAMP design practices for point-of-care (POC) applications, including sample handling and various signal readout methodologies. Next, we explore existing LAMP technologies that have been validated with clinical samples in the field. We summarize recent work that utilizes reverse transcription (RT) LAMP to rapidly detect SARS-CoV-2 as an alternative to standard PCR protocols. Finally, we describe challenges in translating LAMP from the benchtop to the field and opportunities for future LAMP assay development and performance reporting. Expert opinion: Despite the popularity of LAMP in the academic research community and a recent surge in interest in LAMP due to the COVID-19 pandemic, there are numerous areas for improvement in the fundamental understanding of LAMP, which are needed to elevate the field of LAMP assay development and characterization.