Applying Lessons Learned From the COVID‐19 Global Pandemic to Increase Radioactive Source Security System Resilience
Abstract not provided.
Abstract not provided.
Abstract not provided.
Over the last year, the ECP xSDK-multiprecision effort has made tremendous progress in developing and deploying new mixed precision technology and customizing the algorithms for the hardware deployed in the ECP flagship supercomputers. The effort also has succeeded in creating a cross-laboratory community of scientists interested in mixed precision technology and now working together in deploying this technology for ECP applications. In this report, we highlight some of the most promising and impactful achievements of the last year. Among the highlights we present are: Mixed precision IR using a dense LU factorization and achieving a 1.8× speedup on Spock; results and strategies for mixed precision IR using a sparse LU factorization; a mixed precision eigenvalue solver; Mixed Precision GMRES-IR being deployed in Trilinos, and achieving a speedup of 1.4× over standard GMRES; compressed Basis (CB) GMRES being deployed in Ginkgo and achieving an average 1.4× speedup over standard GMRES; preparing hypre for mixed precision execution; mixed precision sparse approximate inverse preconditioners achieving an average speedup of 1.2×; and detailed description of the memory accessor separating the arithmetic precision from the memory precision, and enabling memory-bound low precision BLAS 1/2 operations to increase the accuracy by using high precision in the computations without degrading the performance. We emphasize that many of the highlights presented here have also been submitted to peer-reviewed journals or established conferences, and are under peer-review or have already been published.
Abstract not provided.
Abstract not provided.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Sparse solvers provide essential functionality for a wide variety of scientific applications. Highly parallel sparse solvers are essential for continuing advances in high-fidelity, multi-physics and multi-scale simulations, especially as we target exascale platforms. This paper describes the challenges, strategies and progress of the US Department of Energy Exascale Computing project towards providing sparse solvers for exascale computing platforms. We address the demands of systems with thousands of high-performance node devices where exposing concurrency, hiding latency and creating alternative algorithms become essential. The efforts described here are works in progress, highlighting current success and upcoming challenges. This article is part of a discussion meeting issue 'Numerical algorithms for high-performance computational science'.
Abstract not provided.
Abstract not provided.