Chow, Weng W.; Zhang, Zeyu; Norman, Justin C.; Liu, Songtao; Bowers, John E.
This paper describes an investigation of the linewidth enhancement factor αH in a semiconductor quantum-dot laser. Results are presented for active region parameters and laser configurations important for minimizing αH. In particular, the feasibility of lasing at the gain peak with αH = 0 is explored. The study uses a many-body theory with dephasing effects from carrier scattering treated at the level of quantum-kinetic equations. InAs quantum-dot lasers with different p-modulation doping densities are fabricated and measured to verify the calculated criteria on laser cavity design and epitaxial growth conditions.
A novel experimental methodology is presented to study the deviatoric response of powders in shock regimes. The powders are confined to a cylindrical wedge volume, and a projectile-driven shock wave with a sinusoidally varying front propagates through the powder. The perturbed shock wave exhibits a damping behavior due to irreversible processes of viscosity and strength (deviatoric) of the powder with propagation through increasing powder thicknesses. The inclined surface of the wedge is polished and coated to establish a diffuse surface suitable for reflecting incident laser light into a high-speed camera imaging at 5 MHz. Images of the contrast loss upon shock wave arrival at the observation surface are post-processed for qualitative and quantitative information. New data of shock damping behavior with parameters of perturbation wavelength and initial shock strength are presented for powders of copper, tantalum, and tungsten carbide as well as their mixtures. We present the first full-field images showing additional spatial disturbances on the perturbed shock front that appear dependent on particle material and morphology.
Fast X-ray detectors are critical tools in pulsed power and fusion applications, where detector impulse response of a nanosecond or better is often required. Semiconductor detectors can create fast, sensitive devices with extensive operational flexibility. There is typically a trade-off between detector sensitivity and speed, but higher atomic number absorbers can increase hard X-ray absorption without increasing the charge collection time, provided carriers achieve high velocity. This paper presents X-ray pulse characterization conducted at the Advanced Photon Source of X-ray absorption efficiency and temporal impulse response of current-mode semiconductor X-ray detectors composed of Si, GaAs, and CdTe.
The magnetic-Rayleigh-Taylor (MRT) instability is a ubiquitous phenomenon that occurs in magnetically-driven Z-pinch implosions. It is important to understand this instability since it can decrease the performance of such implosions. In this work, I present a theoretical model for the weakly nonlinear MRT instability. I obtain such a model by asymptotically expanding an action principle, whose Lagrangian leads to the fully nonlinear MRT equations. After introducing a suitable choice of coordinates, I show that the theory can be cast as a Hamiltonian system, whose Hamiltonian is calculated up to the sixth order in a perturbation parameter. The resulting theory captures the harmonic generation of MRT modes. It is shown that the amplitude at which the linear magnetic-Rayleigh-Taylor instability exponential growth saturates depends on the stabilization effect of the magnetic-field tension. Overall, the theory provides an intuitive interpretation of the weakly nonlinear MRT instability and provides a systematic approach for studying this instability in more complex settings.
We report measurements of K-shell fluorescence lines induced by fast electrons in ramp-compressed Co targets. The fluorescence emission was stimulated by fast electrons generated through short-pulse laser-solid interaction with an Al target layer. Compression up to 2.1× solid density was achieved while maintaining temperatures well below the Fermi energy, effectively removing the thermal effects from consideration. We observed small but unambiguous redshifts in the Kβ fluorescence line relative to unshifted Cu Kα. Redshifts up to 2.6 eV were found to increase with compression and to be consistent with predictions from self-consistent models based on density-functional theory.
Scott, Ethan; Hattar, Khalid M.; Braun, Jeffrey L.; Rost, Christina M.; Gaskins, John T.; Bai, Tingyu; Wang, Yekan; Ganski, Claire; Goorsky, Mark; Hopkins, Patrick E.
Despite the exceptional thermal and mechanical functionalities of diamond, its superlative properties are highly subject to the presence of point defects, dislocations, and interfaces. In this study, polycrystalline diamond is ion implanted with C3+, N3+, and O3+ ions at an energy of 16.5 MeV, producing an amorphous layer at the projected range and a damaged crystalline region between the surface and amorphous layer. Using time-domain thermoreflectance in combination with thermal penetration depth calculations based upon the multilayer heat diffusion equation, it is determined that reductions in the thermal conductivity can span nearly two orders of magnitude while still maintaining a polycrystalline structure within the regions thermally probed. Dynamical diffraction simulations of high-resolution x-ray diffraction measurements demonstrate the formation of a strained layer localized at the end of range, with much lower levels of strain near the surface. Furthermore, within the polycrystalline region above the amorphous layer, the average number of displacements-per-atom from the ion irradiation is found to be <1%, with mass impurity concentrations much less than 1%. These low defect concentrations within the thermally probed region demonstrate the remarkably large impact that dilute levels of defects from the ion implantation can have on the thermal conductivity of diamond.
Hexagonal and cubic crystals contain paired sets of internal planes that reflect the linearly polarized components of certain x rays into two separate, perpendicular directions. For the cubic crystals, two distinct crystal orientations provide the same polarization-splitting geometry. One of the orientations may have advantages for plasma spectroscopy by suppressing unwanted reflections. This paper demonstrates the two orientations with a germanium crystal and K characteristic lines from copper and zirconium.
Particle-laden turbulent flows subject to radiative heating are relevant in many applications, for example concentrated solar power receivers. Efficient and accurate simulations provide valuable insights and enable optimization of such systems. However, as there are many uncertainties inherent in such flows, uncertainty quantification is fundamental to improve the predictive capabilities of the numerical simulations. For large-scale, multi-physics problems exhibiting high-dimensional uncertainty, characterizing the stochastic solution presents a significant computational challenge as most strategies require a large number of high-fidelity solves. This requirement might result in an infeasible number of simulations when a typical converged high-fidelity simulation requires intensive computational resources. To reduce the cost of quantifying high-dimensional uncertainties, we investigate the application of a non-intrusive, bi-fidelity approximation to estimate statistics of quantities of interest associated with an irradiated particle-laden turbulent flow. This method exploits the low-rank structure of the solution to accelerate the stochastic sampling and approximation processes by means of cheaper-to-run, lower fidelity representations. The application of this bi-fidelity approximation results in accurate estimates of the quantities of interest statistics, while requiring a small number of high-fidelity model evaluations.
We expand the second-order fluid-structure coupling scheme of Farhat et al. (1998, "Load and Motion Transfer Algorithms for 19 Fluid/Structure Interaction Problems With Non-Matching Discrete Interfaces: Momentum and Energy Conservation, Optimal Discretization and Application to Aeroelasticity,"Comput. Methods Appl. Mech. Eng., 157(1-2), pp. 95-114; 2006, "Provably Second-Order Time-Accurate Loosely-Coupled Solution Algorithms for Transient Nonlinear Computational Aeroelasticity,"Comput. Methods Appl. Mech. Eng., 195(17), pp. 1973-2001) to structural acoustics. The staggered structural acoustics solution method is demonstrated to be second-order accurate in time, and numerical results are compared to a monolithically coupled system. The partitioned coupling method is implemented in the Sierra Mechanics software suite, allowing for the loose coupling of time domain acoustics in sierra/sd to structural dynamics (sierra/sd) or solid mechanics (sierra/sm). The coupling is demonstrated to work for nonconforming meshes. Results are verified for a one-dimensional piston, and the staggered and monolithic results are compared to an exact solution. Huang, H. (1969, "Transient Interaction of Plane Acoustic Waves With a Spherical Elastic Shell,"J. Acoust. Soc. Am., 45(3), pp. 661-670) sphere scattering problem with a spherically spreading acoustic load demonstrates parallel capability on a complex problem. Our numerical results compare well for a bronze plate submerged in water and sinusoidally excited (Fahnline and Shepherd, 2017, "Transient Finite Element/Equivalent Sources Using Direct Coupling and Treating the Acoustic Coupling Matrix as Sparse,"J. Acoust. Soc. Am., 142(2), pp. 1011-1024).
A Talbot-Lau X-ray Deflectometer (TXD) was implemented in the OMEGA EP laser facility to characterize the evolution of an irradiated foil ablation front by mapping electron densities >1022 cm-3 by means of Moiré deflectometry. The experiment used a short-pulse laser (30-100 J, 10 ps) and a foil copper target as an X-ray backlighter source. In the first experimental tests performed to benchmark the diagnostic platform, grating survival was demonstrated and X-ray backlighter laser parameters that deliver Moiré images were described. The necessary modifications to accurately probe the ablation front through TXD using the EP-TXD diagnostic platform are discussed.
An MHD mode with a frequency of <10 kHz has been identified near the inner strike point from various diagnostics, i.e., divertor Langmuir probes, magnetics sensors, and interferometers, but does not appear in the upstream and core diagnostics. This MHD mode is associated with magnetic oscillations of ≳5 G, has a long wavelength in the toroidal direction with toroidal mode number n = 1, but is localized in a narrow radial region of a few cm. The mode appears when the outer strike point remains attached and the inner strike point nearly detaches, grows with increasing density, and eventually weakens and vanishes as the outer strike point detaches. This mode results in particle flux with an order of magnitude higher than the background plasmas near the inner strike point. The mode characteristics are consistent with the Current-Convective-Instability theory prediction. Initial simulations based on experimental input have found oscillations with similar frequencies but weaker amplitude.
Weiss, Lukas; Wensing, Michael; Hwang, Joonsik; Pickett, Lyle M.; Skeen, Scott A.
Abstract: The method for direct injection of fuel in the cylinder of an IC engines is important to high-efficiency and low-emission performance. Optical spray diagnostics plays an important role in understanding plume movement and interaction for multi-hole injectors, and providing baseline understanding used for computational optimization of fuel delivery. Traditional planar or line-of-sight diagnostics fail to capture the liquid distribution because of optical thickness concerns. This work proposes a high-speed (67 kHz) extinction imaging technique at various injector rotations coupled to computed tomography (CT) for time-resolved reconstruction of liquid volume fraction in three dimensions. The number of views selected and processing were based on synthetic (modeled) liquid volume fraction data where extinction and CT adequately reconstructed each plume. The exercise showed that for an 8-hole, symmetric-design injector (ECN Spray G), only three different views are enough to reproduce the direction of each plume, and particularly the mean plume direction. Therefore, the number of views was minimized for experiments to save expense. Measurements applying this limited-view technique confirm plume–plume variations also detected with mechanical patternation, while providing better spatial and temporal resolution than achieved previously. Uncertainties due to the limited view within pressurized spray chambers, the droplet size, and optically thick regions are discussed. Graphic abstract: [Figure not available: see fulltext.].
We report on the characterization of the conditions of an imploding cylindrical plasma by time-resolved x-ray emission spectroscopy. Knowledge about this implosion platform can be applied to studies of particle transport for inertial confinement fusion schemes or to astrophysical plasmas. A cylindrical Cl-doped CH foam within a tube of solid CH was irradiated by 36 beams (Itotal ∼5 × 1014 W/cm2, 1.5 ns square pulse, and Etotal ∼16.2 kJ) of the OMEGA-60 laser to radially compress the CH toward the axis. The analysis of the time-resolved spectra showed that the compression can be described by four distinct phases, each presenting different plasma conditions. First the ablation of the cylinder is dominant; second, the foam is heated and induces a significant jump in emission intensities; third, the temperature and density of the foam reaches a maximum; and finally, the plasma expands. Ranges for the plasma temperature were inferred with the atomic physics code SCRAM (Spectroscopic Collisional-Radiative Atomic Model) and the experimental data have been compared to hydrodynamic simulations performed with the 2D code FLASH, which showed a similar implosion dynamic over time.
Collisions that induce melting and vaporization can have a substantial effect on the thermal and geochemical evolution of planets. However, the thermodynamics of major minerals are not well known at the extreme conditions attained during planet formation. We obtained new data at the Sandia Z Machine and use published thermodynamic data for the major mineral forsterite (Mg2SiO4) to calculate the specific entropy in the liquid region of the principal Hugoniot. We use our calculated specific entropy of shocked forsterite, and revised entropies for shocked silica, to determine the critical impact velocities for melting or vaporization upon decompression from the shocked state to 1 bar and the triple points, which are near the pressures of the solar nebula. We also demonstrate the importance of the initial temperature on the criteria for vaporization. Applying these results to N-body simulations of terrestrial planet formation, we find that up to 20% to 40% of the total system mass is processed through collisions with velocities that exceed the criteria for incipient vaporization at the triple point. Vaporizing collisions between small bodies are an important component of terrestrial planet formation.
In radiobiology, predicting the evolution of irradiated biological matter is nowadays an active field of research to identify DNA lesions or to adapt the radiotherapeutic protocols in radiation oncology. In this context, the numerical methods, based on Monte Carlo track-structure simulations, represent the most suitable and powerful tools for understanding the radiobiological damages induced by ionizing particles. In the present work, we report the theoretical differential and total cross sections, computed within the quantum mechanical continuum distorted wave-eikonal initial state (CDW-EIS) approach, for ion impact on water vapor and DNA nucleobases. These cross sections have been used to build up the input database for the homemade Monte Carlo track-structure TILDA-V. A comparison between the theoretical predictions and the available experimental data is presented. Micro-dosimetry results obtained with TILDA-V are also reported.
Reducing the risk of cyber-attacks that affect the confidentiality, integrity, and availability of distributed Photovoltaic (PV) inverters requires the implementation of an Intrusion Detection System (IDS) at the grid-edge. Often, IDSs use signature or behavior-based analytics to identify potentially harmful anomalies. In this work, the two approaches are deployed and tested on a small, single-board computer; the computer is setup to monitor and detect malevolent traffic in-between an aggregator and a single PV inverter. The Snort, signature-based, analysis tool detected three of the five attack scenarios. The behavior-based analysis, which used an Adaptive Resonance Theory Artificial Neural Network, successfully identified four out of the five attacks. Each of the approaches ran on the single-board computer and decreased the chances of an undetected breach in the PV inverters control system.
As a part of the series of Source Physics Experiments (SPE) conducted on the Nevada National Security Site in southern Nevada, we have developed a local-to-regional scale seismic velocity model of the site and surrounding area. Accurate earth models are critical for modeling sources like the SPE to investigate the role of earth structure on the propagation and scattering of seismic waves. We combine seismic body waves, surface waves, and gravity data in a joint inversion procedure to solve for the optimal 3D seismic compres-sional and shear-wave velocity structures and earthquake locations subject to model smoothness constraints. Earthquakes, which are relocated as part of the inversion, provide P-and S-body-wave absolute and differential travel times. Active source experiments in the region augment this dataset with P-body-wave absolute times and surface-wave dispersion data. Dense ground-based gravity observations and surface-wave dispersion derived from ambient noise in the region fill in many areas where body-wave data are sparse. In general, the top 1–2 km of the surface is relatively poorly sampled by the body waves alone. However, the addition of gravity and surface waves to the body-wave data-set greatly enhances structural resolvability in the near surface. We discuss the method-ology we developed for simultaneous inversion of these disparate data types and briefly describe results of the inversion in the context of previous work in the region.
This report is the first public deliverable from the Defense and Disaster Deployable Turbine project, funded through the distributed wind portfolio of the U.S. Department of Energy Wind Energy Technologies Office. The objective of the project is to explore the opportunity for deployable turbine technologies to meet the operational energy needs of the U.S. military and global disaster response efforts. This report provides a market assessment that was conducted over a year using public reports, presentations at topical conferences, and direct stakeholder engagement interviews with both military and industry representatives. It begins with the high- level operational energy strategy of the Department of Defense that provides the context for alternatives to diesel fuel to meet energy needs. The report then provides an estimate of the energy use of the military in missions where a deployable turbine could potentially serve as an alternative to the baseline use of diesel fuel in generators to provide electricity in remote locations. An overview of domestic and international disaster response is provided with a focus on the role of the military in providing energy to those events. Finally, the report summarizes the technical considerations that would enable a deployable turbine to meet military and disaster response energy needs including the global wind resource, the technical design of the turbine, and the operational constraints of various military missions.
In this report, we summarize preliminary surface characterization results for Nb surfaces, using low energy ion scattering, direct recoil spectrometry, and Auger electron spectroscopy. While most surface analysis tools cannot detect hydrogen, the low energy ion beam techniques described here are among the few techniques that are directly sensitive to it. For this study, we examined chemisorption using both molecular and atomic hydrogen (using an heated tungsten capillary to dissociate the hydrogen.) To complement these results, we have been performing ex-situ spectroscopic ellipsometry as a means of detecting the surface oxide.