Publications

18 Results

Search results

Jump to search filters

Numerical considerations of slow acoustic mode in high-velocity boundary layers

AIAA SciTech Forum and Exposition, 2023

Harris, Shaun R.; Wagnild, Ross M.

Direct numerical simulations (DNS) were conducted of a high-velocity flat plate boundary layer with time-periodic fluctuating inflow. The DNS fluctuation growth and evolution over the plate is then compared to the solution as computed using classical linear stability theory (LST) and the parabolized stability equations (PSE) of a second mode eigen function. The decay rate of the free stream perturbations is also compared to LST and the choice of shock-capturing method and the associated dissipation rate is characterized. The agreement observed between the eigen function from LST and the fundamental harmonic of the temporal Fourier transform (FT) of the DNS simulation demonstrates the ability of the solver to capture the initiation and linear growth of a hypersonic boundary layer instability. The work characterizes the shock-capturing numerical dissipation for slow and second mode growth as well as provides confidence in the numerical solver to study further development towards non-linear growth and eventual transition to turbulence.

More Details

DNS of a Mach 14 Flow Over a Sharp Cone in AEDC Tunnel 9

AIAA SciTech Forum and Exposition, 2023

Wagnild, Ross M.; Harris, Shaun R.; Stack, Cory S.; Morreale, Bryan J.

A wind tunnel test from AEDC Tunnel 9 of a hypersonic turbulent boundary layer is analyzed using several fidelities of numerical simulation including Wall-Modeled Large Eddy Simulation (WMLES), Large Eddy Simulation (LES), and Direct Numerical Simulation (DNS). The DNS was forced to transition to turbulence using a broad spectrum of planar, slow acoustic waves based on the freestream spectrum measured in the tunnel. Results show the flow transitions in a reasonably natural process developing into turbulent flow. This is due to several 2nd mode wave packets advecting downstream and eventually breaking down into turbulence with modest friction Reynolds numbers. The surface shear stress and heat flux agree well with a transitional RANS simulation. Comparisons of DNS data to experimental data showreasonable agreement with regard to mean surface quantities aswell as amplitudes of boundary layer disturbances. The DNS does show early transition relative to the experimental data. Several interesting aspects of the DNS and other numerical simulations are discussed. The DNS data are also analyzed through several common methods such as cross-correlations and coherence of the fluctuating surface pressure.

More Details

Risk assessment and ventilation modeling for hydrogen releases in vehicle repair garages

International Journal of Hydrogen Energy

Ehrhart, Brian D.; Harris, Shaun R.; Blaylock, Myra L.; Muna, Alice B.; Quong, Spencer

The availability of repair garage infrastructure for hydrogen fuel cell vehicles is becoming increasingly important for future industry growth. Ventilation requirements for hydrogen fuel cell vehicles can affect both retrofitted and purpose-built repair garages and the costs associated with these requirements can be significant. A hazard and operability (HAZOP) study was performed to identify risk-significant scenarios related to light-duty hydrogen vehicles in a repair garage. Detailed simulations and modeling were performed using appropriate computational tools to estimate the location, behavior, and severity of hydrogen release based on key HAZOP scenarios. Here, this work compares current fire code requirements to an alternate ventilation strategy to further reduce potential hazardous conditions. Modeling shows that position, direction, and velocity of ventilation have a significant impact on the amount of instantaneous flammable mass in the domain.

More Details

Ensemble Kalman Filter for Assimilating Experimental Data into Large-Eddy Simulations of Turbulent Flows

Flow, Turbulence and Combustion

Labahn, Jeffrey W.; Wu, Hao; Harris, Shaun R.; Coriton, Bruno; Frank, Jonathan H.; Ihme, Matthias

Data assimilation techniques are investigated for integrating high-speed high-resolution experimental data into large-eddy simulations. To this end, an ensemble Kalman filter is employed to assimilate velocity measurements of a turbulent jet at a Reynolds number of 13,500 into simulations. The goal of the current work is to examine the behavior of the assimilation algorithm for state estimation of turbulent flows that are of relevance to engineering applications. This is accomplished by investigating the impact that localization, measurement uncertainties, assimilation frequency, data sparsity and ensemble size have on the estimated state vector. For the flow configuration and computational setup considered in this study an optimal value of the localization radius is identified, which minimizes the error between experimental data and state vector. The impact of experimental uncertainties on the state estimation is demonstrated to provide solution bounds on the assimilation algorithm. It is found that increasing the number of ensembles has a positive impact on the state estimation. In comparison, decreasing the assimilation frequency or reducing the experimental data available for assimilation is found to have a negative impact on the state estimation. These findings demonstrate the viability of assimilating measurements into numerical simulations to improve state estimates, to support parameter evaluations and to guide model assessments.

More Details

Risk Assessment and Ventilation Modeling for Hydrogen Release in Vehicle Repair Garages

Ehrhart, Brian D.; Harris, Shaun R.; Blaylock, Myra L.; Muna, Alice B.; Quong, Spencer

The availability of repair garage infrastructure for hydrogen fuel cell vehicles is becoming increasingly important for future industry growth. Ventilation requirements for hydrogen fuel cell vehicles can affect both retrofitted and purpose-built repair garages and the costs associated with these requirements can be significant. A hazard and operability study (HAZOP) was performed to identify key risk-significant scenarios related to hydrogen vehicles in a repair garage. Detailed simulations and modeling were performed using appropriate computational tools to estimate the location, behavior, and severity of hydrogen release based on key HAZOP scenarios. This work compares current fire code requirements to an alternate ventilation strategy to further reduce potentially hazardous conditions. Overall, the amount of flammable mass of hydrogen at any one time in the simulation is low compared to the total mass of hydrogen released, due to the low flow rate of a low pressure release. It is shown that position, direction, and velocity of ventilation have a significant impact on the amount of instantaneous flammable mass in the domain.

More Details
18 Results
18 Results