Equivalencing of Sine-Sweep and Random Vibration Specification with Considerations of Nonlinear Statistics
Conference Proceedings of the Society for Experimental Mechanics Series
Comparison of pure sinusoidal vibration to random vibration or combinations of the two is an important and useful subject for dynamic testing. The objective of this chapter is to succinctly document the technical background for converting a sine-sweep test specification into an equivalent random vibration test specification. The information can also be used in reverse, i.e., to compare a random vibe spec with a sine-sweep, although that is less common in practice. Because of inherent assumptions involved in such conversions, it is always preferable to test to original specifications and conduct this conversion when other options are impractical. This chapter outlines the theoretical premise and relevant equations. An example of implementation with hypothetical but realistic data is provided that captures the conversion of a sinusoid to an equivalent ASD. The example also demonstrates how to account for the rate of sine-sweep to the duration of the random vibration. A significant content of this chapter is the discussion on the statistical distribution of peaks in a narrow-band random signal and the consequences of that on the damage imparted to a structure. Numerical simulations were carried out to capture the effect of various combinations of narrow-band random and pure sinusoid superimposed on each other. The consequences of this are captured to provide guidance on accuracy and conservatism.