Publications

11 Results

Search results

Jump to search filters

Nanoscale conditions for ductile void nucleation in copper: Vacancy condensation and the growth-limited microstructural state

Acta Materialia

Noell, Philip N.; Sabisch, Julian E.; Medlin, Douglas L.; Boyce, Brad B.

Ductile rupture or tearing usually involves structural degradation from the nucleation and growth of voids and their coalescence into cracks. Although some materials contain preexisting pores, the first step in failure is often the formation of voids. Because this step can govern both the failure strain and the fracture mechanism, it is critical to understand the mechanisms of void nucleation and the enabling microstructural configurations which give rise to nucleation. To understand the role of dislocations during void nucleation, the present study presents ex-situ cross-sectional observations of interrupted deformation experiments revealing incipient, subsurface voids in a copper material containing copper oxide inclusions. The local microstructural state was evaluated using electron backscatter diffraction (EBSD), electron channeling contrast (ECC), transmission electron microscopy (TEM), and transmission kikuchi diffraction (TKD). Surprisingly, before substantial growth and coalescence had occurred, the deformation process had resulted in the nucleation of a high density of nanoscale (≈50 nm) voids in the deeply deformed neck region where strains were on the order of 1.5. Such a proliferation of nucleation sites immediately suggests that the rupture process is limited by void growth, not nucleation. With regard to void growth, analysis of more than 20 microscale voids suggests that dislocation boundaries facilitate the growth process. The present observations call into question prior assumptions on the role of dislocation pile-ups and provide new context for the formulation of revised ductile rupture models. While the focus of this study is on damage accumulation in a highly ductile metal containing small, well-dispersed particles, these results are also applicable to understanding void nucleation in engineering alloys.

More Details

Mechanistic origins of stochastic rupture in metals

Noell, Philip N.; Carroll, Jay D.; Jin, Huiqing J.; Kramer, Sharlotte L.; Sills, Ryan B.; Medlin, Douglas L.; Sabisch, Julian E.; Boyce, Brad B.

The classic models for ductile fracture of metals were based on experimental observations dating back to the 1950’s. Using advanced microscopy techniques and modeling algorithms that have been developed over the past several decades, it is possible now to examine the micro- and nano-scale mechanisms of ductile rupture in more detail. This new information enables a revised understanding of the ductile rupture process under quasi-static room temperature conditions in ductile pure metals and alloys containing hard particles. While ductile rupture has traditionally been viewed through the lens of nucleation-growth-and-coalescence, a new taxonomy is proposed involving the competition or cooperation of up to seven distinct rupture mechanisms. Generally, void nucleation via vacancy condensation is not rate limiting, but is extensive within localized shear bands of intense deformation. Instead, the controlling process appears to be the development of intense local dislocation activity which enables void growth via dislocation absorption.

More Details

Materials and Hydrogen Isotope Science at Sandia's California Laboratory

Zimmerman, Jonathan A.; Balch, Dorian K.; Bartelt, Norman C.; Buchenauer, D.A.; Catarineu, Noelle R.; Cowgill, D.F.; El Gabaly Marquez, Farid E.; Karnesky, Richard A.; Kolasinski, Robert K.; Medlin, Douglas L.; Robinson, David R.; Ronevich, Joseph A.; Sabisch, Julian E.; San Marchi, Christopher W.; Sills, Ryan B.; Smith, Thale R.; Sugar, Joshua D.; Zhou, Xiaowang Z.

Abstract not provided.

11 Results
11 Results