Publications

13 Results
Skip to search filters

Analysis of the dependence of critical electric field on semiconductor bandgap

Journal of Materials Research

Slobodyan, Oleksiy; Flicker, Jack D.; Dickerson, Jeramy R.; Shoemaker, Jonah; Binder, Andrew B.; Smith, Trevor S.; Goodnick, Stephen; Kaplar, Robert K.; Hollis, Mark

Understanding of semiconductor breakdown under high electric fields is an important aspect of materials’ properties, particularly for the design of power devices. For decades, a power-law has been used to describe the dependence of material-specific critical electrical field (Ecrit) at which the material breaks down and bandgap (Eg). The relationship is often used to gauge tradeoffs of emerging materials whose properties haven’t yet been determined. Unfortunately, the reported dependencies of Ecrit on Eg cover a surprisingly wide range in the literature. Moreover, Ecrit is a function of material doping. Further, discrepancies arise in Ecrit values owing to differences between punch-through and non-punch-through device structures. We report a new normalization procedure that enables comparison of critical electric field values across materials, doping, and different device types. An extensive examination of numerous references reveals that the dependence Ecrit ∝ Eg1.83 best fits the most reliable and newest data for both direct and indirect semiconductors. Graphical abstract: [Figure not available: see fulltext.].

More Details

Identification of the defect dominating high temperature reverse leakage current in vertical GaN power diodes through deep level transient spectroscopy

Applied Physics Letters

DasGupta, Sandeepan D.; Slobodyan, O.S.; Smith, Trevor S.; Binder, Andrew B.; Flicker, Jack D.; Kaplar, Robert K.; Mueller, Jacob M.; Garcia Rodriguez, Luciano A.; Atcitty, Stanley A.

Deep level defects in wide bandgap semiconductors, whose response times are in the range of power converter switching times, can have a significant effect on converter efficiency. Here, we use deep level transient spectroscopy (DLTS) to evaluate such defect levels in the n-drift layer of vertical gallium nitride (v-GaN) power diodes with VBD ~ 1500 V. DLTS reveals three energy levels that are at ~0.6 eV (highest density), ~0.27 eV (lowest density), and ~45 meV (a dopant level) from the conduction band. Dopant extraction from capacitance–voltage measurement tests (C–V) at multiple temperatures enables trap density evaluation, and the ~0.6 eV trap has a density of 1.2 × 1015 cm-3. The 0.6 eV energy level and its density are similar to a defect that is known to cause current collapse in GaN based surface conducting devices (like high electron mobility transistors). Analysis of reverse bias currents over temperature in the v-GaN diodes indicates a predominant role of the same defect in determining reverse leakage current at high temperatures, reducing switching efficiency.

More Details

Etched-and-Regrown GaN pn-Diodes with 1600 v Blocking Voltage

IEEE Journal of the Electron Devices Society

Armstrong, Andrew A.; Allerman, A.A.; Pickrell, Gregory P.; Crawford, Mary H.; Glaser, Caleb E.; Smith, Trevor S.

Etched-and-regrown GaN pn-diodes capable of high breakdown voltage (1610 V), low reverse current leakage (1 nA = 6 μ A /cm2 at 1250 V), excellent forward characteristics (ideality factor 1.6), and low specific on-resistance (1.1 m Ω.cm2) were realized by mitigating plasma etch-related defects at the regrown interface. Epitaxial n -GaN layers grown by metal-organic chemical vapor deposition on free-standing GaN substrates were etched using inductively coupled plasma etching (ICP), and we demonstrate that a slow reactive ion etch (RIE) prior to p -GaN regrowth dramatically increases diode electrical performance compared to wet chemical surface treatments. Etched-and-regrown diodes without a junction termination extension (JTE) were characterized to compare diode performance using the post-ICP RIE method with prior studies of other post-ICP treatments. Then, etched-and-regrown diodes using the post-ICP RIE etch steps prior to regrowth were fabricated with a multi-step JTE to demonstrate kV-class operation.

More Details

High voltage GaN p-n diodes formed by selective area regrowth

Electronics Letters

Armstrong, Andrew A.; Pickrell, Gregory P.; Allerman, A.A.; Crawford, Mary H.; Glaser, Caleb E.; Smith, Trevor S.; Abate, Vincent M.

GaN p-n diodes were formed by selective area regrowth on freestanding GaN substrates using a dry etch, followed by post-etch surface treatment to reduce etch-induced defects, and subsequent regrowth into wells. Etched-and-regrown diodes with a 150 μm diameter achieved 840 V operation at 0.5 A/cm2 reverse current leakage and a specific on-resistance of 1.2 mΩ·cm2. Etched-and-regrown diodes were compared with planar, regrown diodes without etching on the same wafer. Both types of diodes exhibited similar forward and reverse electrical characteristics, which indicate that etch-induced defectivity of the junction was sufficiently mitigated so as not to be the primary cause for leakage. An area dependence for forward and reverse leakage current density was observed, suggesting that the mesa sidewall provided a leakage path.

More Details

Hard-switching reliability studies of 1200 v vertical GaN PiN diodes

MRS Communications

Slobodyan, Oleksiy S.; Smith, Trevor S.; Flicker, J.; Sandoval, S.; Matthews, C.; Van Heukelom, M.; Kaplar, Robert K.; Atcitty, S.

We report on reliability testing of vertical GaN (v-GaN) devices under continuous switching conditions of 500, 750, and 1000 V. Using a modified double-pulse test circuit, we evaluate 1200 V-rated v-GaN PiN diodes fabricated by Avogy. Forward current-voltage characteristics do not change over the stress period. Under the reverse bias, the devices exhibit an initial rise in leakage current, followed by a slower rate of increase with further stress. The leakage recovers after a day's relaxation which suggests that trapping of carriers in deep states is responsible. Overall, we found the devices to be robust over the range of conditions tested.

More Details
13 Results
13 Results