Publications

Results 45801–46000 of 99,299

Search results

Jump to search filters

Maintaining Low Voiding Solder Die Attach for Power Die While Minimizing Die Tilt

Hamm, Randy; Peterson, Kenneth A.

This paper addresses work to minimize voiding and die tilt in solder attachment of a large power die, measuring 9.0 mm X 6.5 mm X 0.1 mm (0.354” x 0.256” x 0.004”), to a heat spreader. As demands for larger high power die continue, minimizing voiding and die tilt is of interest for improved die functionality, yield, manufacturability, and reliability. High-power die generate considerable heat, which is important to dissipate effectively through control of voiding under high thermal load areas of the die while maintaining a consistent bondline (minimizing die tilt). Voiding was measured using acoustic imaging and die tilt was measured using two different optical measurement systems. 80Au-20Sn solder reflow was achieved using a batch vacuum solder system with optimized fixturing. Minimizing die tilt proved to be the more difficult of the two product requirements to meet. Process development variables included tooling, weight and solder preform thickness.

More Details

Neutralization of Rubidium Adsorbate Electric Fields by Electron Attachment

Sandia journal manuscript; Not yet accepted for publication

Sedlacek, J.A.; Kim, E.; Rittenhouse, S.T.; Weck, Philippe F.; Sadeghpour, H.R.; Shaffer, J.P.

We investigate the (0001) surface of single crystal quartz with a submonolayer of Rb adsorbates. Using Rydberg atom electromagnetically induced transparency, we investigate the electric elds resulting from Rb adsorbed on the quartz surface, and measure the activation energy of the Rb adsorbates. We show that the Rb induces a negative electron affnity (NEA) on the quartz surface. The NEA surface allows for low energy electrons to bind to the surface and cancel the electric eld from the Rb adsorbates. Our results have implications for integrating Rydberg atoms into hybrid quantum systems and the fundamental study of atom-surface interactions, as well as applications for electrons bound to a 2D surface.

More Details

An Evaluation of Frangible Materials as Veneers on Vented Structural Member Designs

Jameson, Kevin J.

Literature shows there has been extensive research and testing done in the area of wall panels and frangible materials. There is evidence from past research that shows it is possible to vent a structure that has had an accidental internal explosion [1]. The reviewed literature shows that most designs vent the entire wall panel versus a frangible material attached to the wall panel. The frangible material attachment points are important to determine the overall loading of the wall panel structure [2]. The materials used in the reviewed literature were securely attached as well as strong enough to remain intact during the pressure loading to move the entire wall panel. Since the vented wall panel was the weakest part of the overall structure, the other walls of the structure were substantially larger. The structure was usually built from concrete and large amounts of steel with dirt and sand over the top of the structure.The study will be conducted at Sandia National Laboratories located in Albuquerque New Mexico. The skeletal structural design for evaluation is a rectangular frame with a square grid pattern constructed from steel. The skeletal structure has been given to the researcher as a design requirement. The grid pattern will be evaluated strictly on plastic deformation and the loading that is applied from the frangible material. The frangible material tested will either fit into the grid or will be a veneer lightly attached to the structure frame. The frangible material may be required on both sides of the structure to adequately represent the application.

More Details

NRT Rotor Structural / Aeroelastic Analysis for the Preliminary Design Review

Ennis, Brandon L.; Paquette, Joshua A.

This document describes the initial structural design for the National Rotor Testbed blade as presented during the preliminary design review at Sandia National Laboratories on October 28- 29, 2015. The document summarizes the structural and aeroelastic requirements placed on the NRT rotor for satisfactory deployment at the DOE/SNL SWiFT experimental facility to produce high-quality datasets for wind turbine model validation. The method and result of the NRT blade structural optimization is also presented within this report, along with analysis of its satisfaction of the design requirements.

More Details

Cohesive Zone Modeling in Geomaterial

Provost, Rachel E.; Newell, Pania; Matteo, Edward N.

The purpose of the two projects discussed in this report is to use the cohesive zone method to evaluate fracture properties of geomaterials. Two experimental tests, the push-out test and the notched three-point bend test, were modeled computationally using finite element analysis and cohesive zone modeling to extract load and displacement information and ultimately determine failure behavior. These results are to be compared with experimental tests when they are available. The first project used the push-out test to investigate the shear bond strength at the cement- shale interface. The second project explored the effects of scaling a notched three-point bending specimen to study fracture toughness characteristics. The bond strength and fracture toughness of a material and its interfaces are important parameters to consider in subsurface applications so that zonal isolation can be achieved.

More Details

Comparison of Ring-Buffer-Based Packet Capture Solutions

Barker, Steven A.

Traditional packet-capture solutions using commodity hardware incur a large amount of overhead as packets are copied multiple times by the operating system. This overhead slows sensor systems to a point where they are unable to keep up with high bandwidth traffic, resulting in dropped packets. Incomplete packet capture files hinder network monitoring and incident response efforts. While costly commercial hardware exists to capture high bandwidth traffic, several software-based approaches exist to improve packet capture performance using commodity hardware.

More Details

Abuse Tolerance Improvements

Orendorff, Christopher; Nagasubramanian, Ganesan; Fenton, Kyle R.; Allcorn, Eric

As lithium-ion battery technologies mature, the size and energy of these systems continues to increase (> 50 kWh for EVs); making safety and reliability of these high energy systems increasingly important. While most material advances for lithium-ion chemistries are directed toward improving cell performance (capacity, energy, cycle life, etc.), there are a variety of materials advancements that can be made to improve lithium-ion battery safety. Issues including energetic thermal runaway, electrolyte decomposition and flammability, anode SEI stability, and cell-level abuse tolerance continue to be critical safety concerns. This report highlights work with our collaborators to develop advanced materials to improve lithium-ion battery safety and abuse tolerance and to perform cell-level characterization of new materials.

More Details

Single-Pol Synthetic Aperture Radar Terrain Classification using Multiclass Confidence for One-Class Classifiers

Sandia journal manuscript; Not yet accepted for publication

Koch, Mark W.; Steinbach, Ryan M.; Moya, Mary M.

Except in the most extreme conditions, Synthetic aperture radar (SAR) is a remote sensing technology that can operate day or night. A SAR can provide surveillance over a long time period by making multiple passes over a wide area. For object-based intelligence it is convenient to segment and classify the SAR images into objects that identify various terrains and man-made structures that we call “static features.” In this paper we introduce a novel SAR image product that captures how different regions decorrelate at different rates. Using superpixels and their first two moments we develop a series of one-class classification algorithms using a goodness-of-fit metric. P-value fusion is used to combine the results from different classes. We also show how to combine multiple one-class classifiers to get a confidence about a classification. This can be used by downstream algorithms such as a conditional random field to enforce spatial constraints.

More Details

Active Suppression of Drilling System Vibrations For Deep Drilling

Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen P.; Cashion, Avery T.; Mesh, Mikhail; Radigan, William T.; Su, Jiann-Cherng

The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-based drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.

More Details

Active Learning in the Era of Big Data

Jamieson, Kevin; Davis, Warren L.

Active learning methods automatically adapt data collection by selecting the most informative samples in order to accelerate machine learning. Because of this, real-world testing and comparing active learning algorithms requires collecting new datasets (adaptively), rather than simply applying algorithms to benchmark datasets, as is the norm in (passive) machine learning research. To facilitate the development, testing and deployment of active learning for real applications, we have built an open-source software system for large-scale active learning research and experimentation. The system, called NEXT, provides a unique platform for realworld, reproducible active learning research. This paper details the challenges of building the system and demonstrates its capabilities with several experiments. The results show how experimentation can help expose strengths and weaknesses of active learning algorithms, in sometimes unexpected and enlightening ways.

More Details

Single-Volume Neutron Scatter Camera for High-Efficiency Neutron Imaging and Source Characterization. Year 2 of 3 Summary

Brubaker, E.

The neutron scatter camera (NSC), an imaging spectrometer for fission energy neutrons, is an established and proven detector for nuclear security applications such as weak source detection of special nuclear material (SNM), arms control treaty verification, and emergency response. Relative to competing technologies such as coded aperture imaging, time-encoded imaging, neutron time projection chamber, and various thermal neutron imagers, the NSC provides excellent event-by-event directional information for signal/background discrimination, reasonable imaging resolution, and good energy resolution. Its primary drawback is very low detection efficiency due to the requirement for neutron elastic scatters in two detector cells. We will develop a singlevolume double-scatter neutron imager, in which both neutron scatters can occur in the same large active volume. If successful, the efficiency will be dramatically increased over the current NSC cell-based geometry. If the detection efficiency approaches that of e.g. coded aperture imaging, the other inherent advantages of double-scatter imaging would make it the most attractive fast neutron detector for a wide range of security applications.

More Details

Enabling Explosives and Contraband Detection with Neutron Resonant Attenuation. Year 1 of 3 Summary

Sweany, Melinda D.

Material Identification by Resonant Attenuation is a technique that measures the energy-dependent attenuation of 1-10 MeV neutrons as they pass through a sample. Elemental information is determined from the neutron absorption resonances unique to each element. With sufficient energy resolution, these resonances can be used to categorize a wide range of materials, serving as a powerful discrimination technique between explosives, contraband, and other materials. Our proposed system is unique in that it simultaneously down-scatters and time tags neutrons in scintillator detectors oriented between a d-T generator and sample. This allows not only for energy measurements without pulsed neutron beams, but for sample interrogation over a large range of relevant energies, vastly improving scan times. Our system’s core advantage is a potential breakthrough ability to provide detection discrimination of threat materials by their elemental composition (e.g. water vs. hydrogen peroxide) without opening the container. However, several technical and computational challenges associated with this technique have yet to be addressed. There are several open questions: what is the sensitivity to different materials, what scan times are necessary, what are the sources of background, how do each of these scale as the detector system is made larger, and how can the system be integrated into existing scanning technology to close current detection gaps? In order to prove the applicability of this technology, we will develop a validated model to optimize the design and characterize the uncertainties in the measurement, and then test the system in a real-world scenario. This project seeks to perform R&D and laboratory tests that demonstrate proof of concept (TRL 3) to establishing an integrated system and evaluating its performance (TRL 4) through both laboratory tests and a validated detector model. The validated model will allow us to explore our technology’s benefits to explosive detection in various applications.

More Details

Advanced Imaging Algorithms for Radiation Imaging Systems

Marleau, P.

The intent of the proposed work, in collaboration with University of Michigan, is to develop the algorithms that will bring the analysis from qualitative images to quantitative attributes of objects containing SNM. The first step to achieving this is to develop an indepth understanding of the intrinsic errors associated with the deconvolution and MLEM algorithms. A significant new effort will be undertaken to relate the image data to a posited three-dimensional model of geometric primitives that can be adjusted to get the best fit. In this way, parameters of the model such as sizes, shapes, and masses can be extracted for both radioactive and non-radioactive materials. This model-based algorithm will need the integrated response of a hypothesized configuration of material to be calculated many times. As such, both the MLEM and the model-based algorithm require significant increases in calculation speed in order to converge to solutions in practical amounts of time.

More Details

2015 Strategic Petroleum Reserve Bayou Choctaw Well Integrity Grading Report

Roberts, Barry L.; Lord, David; Lord, Anna S.; Bettin, Giorgia; Park, Byoung; Rudeen, D.K.; Eldredge, L.L.; Wynn, K.; Checkai, D.; Osborne, G.; Moore, D.

This report summarizes the work performed in the prioritization of cavern access wells for remediation and monitoring at the Bayou Choctaw Strategic Petroleum Reserve site. The grading included consideration of all 15 wells at the Bayou Choctaw site, with each active well receiving a separate grade for remediation and monitoring. Numerous factors affecting well integrity were incorporated into the grading including casing survey results, cavern pressure history, results from geomechanical simulations, and site geologic factors. The factors and grading framework used here are the same as those used in developing similar well remediation and monitoring priorities at the Big Hill, Bryan Mound, and West Hackberry Strategic Petroleum Reserve Sites.

More Details

Advanced SMRs Using S-CO2 Power Conversion with Dry Cooling

Middleton, Bobby D.

This report concludes the LDRD entitled "Advanced SMRs using S-CO2 Power Conversion with Dry Cooling." The goal of this project was to demonstrate the feasibility of using sCO2 as the working fluid in a dry-cooled natural circulation loop. The reason for doing this is to demonstrate that such a loop could be utilized in small modular reactors (SMRs) as a method for (a) passively removing decay heat from the reactor and (b) cooling the reactor without using the copious amounts of water needed for wet-cooled reactors. The dry-cooling aspect of this work is possible due to the working conditions of a sCO2 Brayton power conversion cycle. The loop was designed, built, and operated over the three-year life of the LDRD project. This report outlines some of the key accomplishments and some of the future work that we are continuing to try to complete in the future. A more comprehensive report will be completed and submitted in the Fall of 2015.

More Details

Scalable Parallel Distance Field Construction for Large-Scale Applications

IEEE Transactions on Visualization and Computer Graphics

Yu, Hongfeng; Xie, Jinrong; Ma, Kwan L.; Kolla, Hemanth; Chen, Jacqueline H.

Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. A new distributed spatial data structure, named parallel distance tree, is introduced to manage the level sets of data and facilitate surface tracking over time, resulting in significantly reduced computation and communication costs for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance metrics from real-world applications. We demonstrate its efficiency and scalability on state-of-the-art supercomputers using both large-scale volume datasets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces for a petascale combustion simulation. Our work greatly extends the usability of distance fields for demanding applications.

More Details

Parametric Study of Injection Rates With Solenoid Injectors in an Injection Quantity and Rate Measuring Device

Journal of Engineering for Gas Turbines and Power

Busch, Stephen; Miles, Paul

A Moehwald HDA (HDA is a German acronym: Hydraulischer Druckanstieg: hydraulic pressure increase) injection quantity and rate measuring unit is used to investigate injection rates obtained with a fast-acting, preproduction diesel solenoid injector. Experimental parametric variations are performed to determine their impact on measured injection rate traces. A pilot-main injection strategy is investigated for various dwell times; these preproduction injectors can operate with very short dwell times with distinct pilot and main injection events. Dwell influences the main injection rate shape. A comparison between a diesel-like fuel and a gasoline-like fuel shows that injection rates are comparable for a single injection but dramatically different for multiple injections with short dwells.

More Details

UWBG GC EAB Report

Idar, Deanne J.

The EAB commends the UWBG GC team for its noteworthy progress in the first year of a bold, high-risk LDRD project. The board remains unaware of any comparable effort in the U.S., and the project clearly benefits mission needs relevant to Sandia and the Nation. The GC goals remain ambitious and potentially transformative. The GC team presented development of world-class science and technology (S&T) capabilities as well as a promising vertical diode prototype demonstration. The board applauds the GC team for increased engagements leading to spinoff work with Sandia’s nuclear weapons (NW) customer and enhanced awareness of Sandia’s unique value proposition with external collaborators and potential end-users.

More Details

Role of Microstructure and Doping on the Mechanical Strength and Toughness of Polysilicon Thin Films

Journal of Microelectromechanical Systems

Yagnamurthy, Sivakumar; Boyce, Brad L.; Chasiotis, Ioannis

The role of microstructure and doping on the mechanical strength of microscale tension specimens of columnar grain and laminated polysilicon doped with different concentrations of phosphorus was investigated. The average tensile strengths of undoped columnar and laminated polysilicon specimens were 1.3 ± 0.1 and 2.45 ± 0.3 GPa, respectively. Heavy doping reduced the strength of columnar polysilicon specimens to 0.9 ± 0.1 GPa. On grounds of Weibull statistics, the experimental results from specimens with gauge sections of 1000 μm × 100 μm × 1 μm predicted quite well the tensile strength of specimens with gauge sections of 150 μm × 3.75 μm × 1 μm, and vice versa. The large difference in the mechanical strength between columnar and laminated polysilicon specimens was due to sidewall flaws in columnar polysilicon, which were introduced during reactive ion etching (RIE) and were further exacerbated by phosphorus doping. Removal of the large defect regions at the sidewalls of columnar polysilicon specimens via ion milling increased their tensile strength by 70%-100%, approaching the strength of laminated polysilicon, which implies that the two types of polysilicon films have comparable tensile strength. Measurements of the effective mode I critical stress intensity factor, KIC,eff, also showed that all types of polysilicon films had comparable resistance to fracture. Therefore, additional processing steps to eliminate the edge flaws in RIE patterned devices could result in significantly stronger microelectromechanical system components fabricated by conventional columnar polysilicon films.

More Details

The Initial Atmospheric Transport (IAT) Code: Description and Validation

Morrow, Charles

The Initial Atmospheric Transport (IAT) computer code was developed at Sandia National Laboratories as part of their nuclear launch accident consequences analysis suite of computer codes. The purpose of IAT is to predict the initial puff/plume rise resulting from either a solid rocket propellant or liquid rocket fuel fire. The code generates initial conditions for subsequent atmospheric transport calculations. The Initial Atmospheric Transfer (IAT) code has been compared to two data sets which are appropriate to the design space of space launch accident analyses. The primary model uncertainties are the entrainment coefficients for the extended Taylor model. The Titan 34D accident (1986) was used to calibrate these entrainment settings for a prototypic liquid propellant accident while the recent Johns Hopkins University Applied Physics Laboratory (JHU/APL, or simply APL) large propellant block tests (2012) were used to calibrate the entrainment settings for prototypic solid propellant accidents. North American Meteorology (NAM )formatted weather data profiles are used by IAT to determine the local buoyancy force balance. The IAT comparisons for the APL solid propellant tests illustrate the sensitivity of the plume elevation to the weather profiles; that is, the weather profile is a dominant factor in determining the plume elevation. The IAT code performed remarkably well and is considered validated for neutral weather conditions.

More Details

Trajectory analysis via a geometric feature space approach

Statistical Analysis and Data Mining

Foulk, James W.; Wilson, Andrew T.

This study aimed to organize a body of trajectories in order to identify, search for and classify both common and uncommon behaviors among objects such as aircraft and ships. Existing comparison functions such as the Fréchet distance are computationally expensive and yield counterintuitive results in some cases. We propose an approach using feature vectors whose components represent succinctly the salient information in trajectories. These features incorporate basic information such as the total distance traveled and the distance between start/stop points as well as geometric features related to the properties of the convex hull, trajectory curvature and general distance geometry. Additionally, these features can generally be mapped easily to behaviors of interest to humans who are searching large databases. Most of these geometric features are invariant under rigid transformation. We demonstrate the use of different subsets of these features to identify trajectories similar to an exemplar, cluster a database of several hundred thousand trajectories and identify outliers.

More Details

Low energy electrons and swift ion track structure in PADC

Radiation Physics and Chemistry

Weck, Philippe F.; Fromm, Michel; Quinto, Michele A.; Champion, Christophe

The current work aims at providing an accurate description of the ion track-structure in poly-allyl dyglycol carbonate (PADC) by using an up-to-date Monte-Carlo code-called TILDA-V (a French acronym for Transport d'Ions Lourds Dans l'Aqua & Vivo). In this simulation the ion track-structure in PADC is mainly described in terms of ejected electrons with a particular attention done to the Low Energy Electrons (LEEs). After a brief reminder of the most important channels through which LEEs are prone to break a chemical bond, we will report on the simulated energetic distributions of LEEs along an ion track in PADC for particular incident energies located on both sides of the Bragg-peak position. Finally, based on the rare data dealing with LEEs interaction with polymers or organic molecules, we will emphasise the role played by the LEEs in the formation of a latent track in PADC, and more particularly the one played by the sub-ionization electrons.

More Details

Flow instabilities in non-uniformly heated helium jet arrays used for divertor PFCs

Fusion Science and Technology

Youchison, Dennis L.

Due to a lack of prototypical experimental data, little is known about the off-normal behavior of recently proposed divertor jet cooling concepts. This article describes a computational fluid dynamics (CFD) study on two jet array designs to investigate their susceptibility to parallel flow instabilities induced by non-uniform heating and large increases in the helium outlet temperature. The study compared a single 25-jet helium-cooled modular divertor (HEMJ) thimbleand a micro-jet array with 116 jets. Both havepure tungsten armor and atotal mass flow rate of 10 g/s at a 600°C inlet temperature. We investigated flow perturbations caused by a 30 MW/m2 off-normal heat flux applied over a 25 mm2 area in addition to the nominal 5 MW/m2 applied over a 75 mm2 portion of the face. The micro-jet array exhibited lower temperatures and a more uniform surface temperature distribution than the HEMJ thimble. We also investigated the response of a manifolded nine-finger HEMJ assemblyusing the nominal heat flux and a 274 mm2 heated area. For the 30 MW/m2 case, the micro-jet array absorbed 750 W in the helium with a maximum armor surface temperature of 1280°C and a fluid/solid interface temperature of 801°C. The HEMJ absorbed 750 W with a maximum armor surface temperature of 1411°C and a fluid/solid interface temperature of 844°C.For comparison, both the single HEMJ finger and the micro-jet array used 5-mm-thick tungsten armor. The ratio of maximum to average temperature and variations in the local heat transfer coefficient were lower for the micro-jet array compared to the HEMJ device. Although high heat flux testing is required to validate the results obtained in these simulations, the results provide important guidance in jet design and manifolding to increase heat removal while providing more even temperature distribution and minimizing non-uniformity in the gas flowand thermal stresses at the armor joint.

More Details

Comparison of trigger requirements for gas switches for linear transformer drivers

Proceedings of the 2014 IEEE International Power Modulator and High Voltage Conference, IPMHVC 2014

Leckbee, J.J.; Pena, Gary; Kiefer, Mark L.; Alexander, Jeff A.; Stoltzfus, Brian; Brown, J.L.; Wigelsworth, H.; White, F.E.; Bui, B.

Linear Transformer Driver (LTD) technology is being developed for short pulse electron beam applications as well as high current Z-pinch drivers. Designs for both applications require low inductance spark gap switches which hold off 200 kV and trigger with low jitter. LTD cells or cavities typically contain many parallel switches which must close with low jitter to insure efficient operation of the system. The switch jitter must be much less than the risetime of the output pulse to prevent switches from firing after the peak in output power. Experiments with a 10-brick Ursa Minor cavity indicate that the switch jitter must be less than 2 ns to limit the late switch rate to less than 2%. Three swith designs have been tested in a single switch platform to evaluate switch jitter as a function of the peak trigger voltage, trigger pulse risetime, and switch pressure. Operating parameters were determined for each switch to meet the 2 ns jitter requirement.

More Details

2014 Annual Site Environmental Report Summary Pamphlet for Sandia National Laboratories New Mexico

Griffith, Stacy

Sandia Corporation's (Sandia's) enduring core mission is to provide science and engineering support for the nation's nuclear weapons stockpile. Today, the mission encompasses additional critical aspects of national security, including developing technologies and strategies for responding to emerging threats, protecting and preventing the disruption of critical infrastructures, and supporting the nonproliferation of weapons of mass destruction. Sandia also collaborates with representatives from other government agencies, the industrial sector, and universities to develop and commercialize new technologies.

More Details

ZAPP shot summary

Loisel, Guillaume P.

This was the second Z Astrophysical Plasma Properties (ZAPP) fundamental science shot series of 2015. ZAPP experiments measure fundamental properties of atoms in plasmas to solve the following important astrophysical puzzles: Why can’t we accurately model the opacity of Fe at the convection zone boundary in the Sun? How accurate are the photoionization models used to interpret data from xray satellite observations? and Why doesn’t spectral fitting provide the correct properties for White Dwarfs?

More Details

A new method for producing automated seismic bulletins: Probabilistic event detection, association, and location

Bulletin of the Seismological Society of America

Draelos, Timothy J.; Ballard, Sanford; Young, Christopher J.; Brogan, Ronald

Given a set of observations within a specified time window, a fitness value is calculated at each grid node by summing station-specific conditional fitness values. Assuming each observation was generated by a refracted P wave, these values are proportional to the conditional probabilities that each observation was generated by a seismic event at the grid node. The node with highest fitness value is accepted as a hypothetical event location, subject to some minimal fitness value, and all arrivals within a longer time window consistent with that event are associated with it. During the association step, a variety of different phases are considered. Once associated with an event, an arrival is removed from further consideration. While unassociated arrivals remain, the search for other events is repeated until none are identified. Results are presented in comparison with analyst-reviewed bulletins for three datasets: a two-week ground-truth period, the Tohoku aftershock sequence, and the entire year of 2010. The probabilistic event detection, association, and location algorithm missed fewer events and generated fewer false events on all datasets compared to the associator used at the International Data Center (51% fewer missed and 52% fewer false events on the ground-truth dataset when using the same predictions).

More Details

Magnetic relaxometry as applied to sensitive cancer detection and localization

Biomedizinische Technik

De Haro, Leyma P.; Karaulanov, Todor; Vreeland, Erika C.; Anderson, Bill; Hathaway, Helen J.; Huber, Dale L.; Matlashov, Andrei N.; Nettles, Christopher P.; Price, Andrew D.; Monson, Todd; Flynn, Edward R.

Background: Here we describe superparamagnetic relaxometry (SPMR), a technology that utilizes highly sensitive magnetic sensors and superparamagnetic nanoparticles for cancer detection. Using SPMR, we sensitively and specifically detect nanoparticles conjugated to biomarkers for various types of cancer. SPMR offers high contrast in vivo, as there is no superparamagnetic background, and bones and tissue are transparent to the magnetic fields. Methods: In SPMR measurements, a brief magnetizing pulse is used to align superparamagnetic nanoparticles of a discrete size. Following the pulse, an array of superconducting quantum interference detectors (SQUID) sensors detect the decaying magnetization field. NP size is chosen so that, when bound, the induced field decays in seconds. They are functionalized with specific biomarkers and incubated with cancer cells in vitro to determine specificity and cell binding. For in vivo experiments, functionalized NPs are injected into mice with xenograft tumors, and field maps are generated to localize tumor sites. Results: Superparamagnetic NPs developed here have small size dispersion. Cell incubation studies measure specificity for different cell lines and antibodies with very high contrast. In vivo animal measurements verify SPMR localization of tumors. Our results indicate that SPMR possesses sensitivity more than 2 orders of magnitude better than previously reported.

More Details

Effects of aggregate morphology and size on laser-induced incandescence and scattering from black carbon (mature soot)

Journal of Aerosol Science

Bambha, Ray; Michelsen, Hope A.

We have used a Single-Particle Soot Photometer (SP2) to measure time-resolved laser-induced incandescence (LII) and laser scatter from combustion-generated mature soot with a fractal dimension of 1.88 extracted from a burner. We have also made measurements on restructured mature-soot particles with a fractal dimension of 2.3-2.4. We reproduced the LII and laser-scatter temporal profiles with an energy- and mass-balance model, which accounted for heating of particles passed through a CW-laser beam over laser-particle interaction times of ~10. μs. The results demonstrate a strong influence of aggregate size and morphology on LII and scattering signals. Conductive cooling competes with absorptive heating on these time scales; the effects are reduced with increasing aggregate size and fractal dimension. These effects can lead to a significant delay in the onset of the LII signal and may explain an apparent low bias in the SP2 measurements for small particle sizes, particularly for fresh, mature soot. The results also reveal significant perturbations to the measured scattering signal from LII interference and suggest rapid expansion of the aggregates during sublimation.

More Details

Understanding the Risk of Chloride Induced Stress Corrosion Cracking of Interim Storage Containers for the Dry Storage of Spent Nuclear Fuel: Evolution of Brine Chemistry on the Container Surface

Enos, David; Bryan, C.R.

Although the susceptibility of austenitic stainless steels to chloride-induced stress corrosion cracking is well known, uncertainties exist in terms of the environmental conditions that exist on the surface of the storage containers. While a diversity of salts is present in atmospheric aerosols, many of these are not stable when placed onto a heated surface. Given that the surface temperature of any container storing spent nuclear fuel will be well above ambient, it is likely that salts deposited on its surface may decompose or degas. To characterize this effect, relevant single and multi-salt mixtures are being evaluated as a function of temperature and relative humidity to establish the rates of degassing, as well as the likely final salt and brine chemistries that will remain on the canister surface.

More Details

A Modal Model to Simulate Typical Structural Dynamic Nonlinearity

Pacini, Benjamin R.; Mayes, Randall L.; Roettgen, Daniel R.

Some initial investigations have been published which simulate nonlinear response with almost traditional modal models: instead of connecting the modal mass to ground through the traditional spring and damper, a nonlinear Iwan element was added. This assumes that the mode shapes do not change with amplitude and there are no interactions between modal degrees of freedom. This work expands on these previous studies. An impact experiment is performed on a structure which exhibits typical structural dynamic nonlinear response, i.e. weak frequency dependence and strong damping dependence on the amplitude of vibration. Use of low level modal test results in combination with high level impacts are processed using various combinations of modal filtering, the Hilbert Transform and band-pass filtering to develop response data that are then fit with various nonlinear elements to create a nonlinear pseudo-modal model. Simulations of forced response are compared with high level experimental data for various nonlinear element assumptions.

More Details

Plasma Measurements in High Intensity Electron Beam Diodes

IEEE Transactions on Plasma Science

Kiefer, Mark L.; Patel, Sonal G.; Bennett, Nichelle; Welch, Dale; Bernshtam, V.; Doron, R.; Maron, Yitzhak

Experiments are being performed on the Self-Magnetic Pinch (SMP) electron beam diode on the RITS-6 accelerator at Sandia National Laboratories. This diode produces a tightly focused electron beam (< 3mm diameter) which is incident on a high atomic number bremsstrahlung x-ray converter. Typical diode parameters are 120 kA, 7 MeV, and 70ns current pulse, giving a ~45ns x-ray pulse. Plasmas from contaminants on the electrode surfaces propagate into the A-K vacuum gap, affecting the impedance, x-ray spectrum, and pulse width. These plasmas are measured using diagnostics, which include: spectroscopy, optical imaging, and photon detection; to obtain velocity, density, and temperature information. These parameters are measured both spatially, using multi-fiber arrays, and temporally, using streak cameras and avalanche photodiodes. Plasma densities and temperatures are determined from detailed, time-dependent, collisional-radiative (CT) and radiation transport (RT) models, which include Stark broadening of the hydrogen-alpha transition line and carbon ion line ratios. These results are combined with hybrid PIC/fluid simulations to model the plasma’s overall behavior. Densities of up to 10^19 cm-3 have been measured on the electrode surfaces, decreasing by several orders of magnitude both radially and axially across the vacuum gap. Electrode plasma expansion velocities of up to 10 cm/microsecond correlate well with the decreasing impedance profile (~0.5 Ohms/ns) observed during the pulse.

More Details

Dynamic Recrystallization Model for Whisker and Hillock Growth

Applied Physics Review

Vianco, Paul T.; Neilsen, Michael K.

Tin (Sn) whiskers are not a recent development. Studies in the late 1930’s investigated thin filaments that grew spontaneously from Sn coatings used for the corrosion protection of electronic hardware. It was soon recognized that these Sn filaments, or whiskers, could create short circuits in the same electronic equipment. Figure 1a illustrates whisker growth in the hole of a printed circuit board having an immersion Sn surface finish. The engineering solution was to contaminate the Sn with > 3 wt.% of lead (Pb). The result was that whisker growth was replaced with hillock formation (Fig. 1b) that posed a minimal reliability concern to electrical circuits. Today, Pb-containing finishes are being replaced with pure Sn coatings to meet environmental restrictions on Pb use. The same short-circuit concerns have been raised, once again, with respect to Sn whiskers.

More Details

Stochastic Richardson Extrapolation Based Numerical Error Estimation for Kinetic Plasma Simulations

Radtke, Gregg A.; Cartwright, Keith; Musson, Lawrence C.

We present a numerical error estimation technique specifically formulated to deal with stochastic code output with multiple discretization parameters. This method is based on multiple fits to an error model with arbitrary convergence rates and cross-coupling terms, performed using nonlinear optimization. The fitting approach varies by the type of residual norm which influences the importance of outliers, and weights which influences the relative importance of data points in the coarse and refined regions of discretization parameter space. To account for the influence of stochastic noise, these fits are performed on multiple bootstrap values based on the underlying response data set. Using an automated discretization domain selection scheme, the fits are performed on a series of reduced sets of discretization levels in order to find an optimal fully-converged result estimate in the minimum variance sense; this automated approach enables straightforward analysis of multiple quantities of interest and/or time and spatially-dependent response data. The overall numerical error analysis method is useful for verification and validation problems for stochastic simulation methods and forms a key component in the overall uncertainty quantification process. The method was demonstrated for steady and unsteady electron diode problems simulated using a particle-in-cell kinetic plasma code, demonstrating excellent results.

More Details

Towards Using Eshelby Calculations to Enhance Kinetic Model for Zirconium Hydride Precipitation

Mitchell, John A.; Tikare, Veena; Weck, Philippe F.

A C++ library (called Eshelby) was implemented in fiscal year 2015 based upon the formulas documented in this report. The library implements a generalized version of Eshelby's inclusion problem. The library was written as a set of functions which can be called from another program; the principle intended use cases are kinetic models of precipitate formation in zirconium claddings where use of the Eshelby library provides needed elastic energy density calculations, as well as calculations of stress and strain in and around precipitates; it is intended that the library will be made open source. For isotropic inclusions in the form of oblate and prolate ellipsoids, the Eshelby library can be used for nearly any relevant/appropriate shape parameters to calculate strains, stresses and energy density at interior and exterior points. The Eshelby library uses a combination of analytical formulas and numerical routines making it very extensible. For example, the library can can easily be extended to include inclusions such as spheres since analytical expressions exist for the required elliptic integrals; similarly, general ellipsoids do not have analytical results for the required elliptic integrals but those integrals can be numerically evaluated and thus fit naturally into the Eshelby library. This report documents all formulas implemented in the Eshelby library and presents some demonstration calculations relevant to the intended application.

More Details

Creation of a Benchmark Suite for SNL Nuclear Criticality Safety Code Validation (Volume 1 - MCNP)

Depriest, Kendall R.; Miller, John

The Nuclear Criticality Safety Program at Sandia National Laboratories has developed a suite of benchmark problems to be utilized for validation of MCNP6 Version 1.0 with ENDF/B-VII Release 1 cross sections. The benchmark suite covers a broad range of fissile material types, material forms, moderators, reflectors, and neutron energy spectra. It is anticipated that this benchmark suite will cover the vast majority of critical safety applications at SNL. The benchmark suite establishes a Bias and Bias Uncertainty for use in criticality safety analyses. In addition, the Bias and Bias Uncertainty value derived from the benchmark suite using the traditional SNL NCS methodology is demonstrated to be equivalent to the more robust statistical techniques used at many DOE sites.

More Details

Formulas for Fast Computation of Divergence Statistics Applied to Quantitative Performance Analysis

Pebay, Philippe P.; Bennett, Janine C.

In an earlier work, we reported on the extension to the statistical analysis capability of the Visualization Tool Kit (VTK), which we developed for the calculation of divergence statistics, with the particular aim of providing quantitative means for High Performance Computing (HPC) performance analysis, of which we provided an example as well as user's manual. However, we did not provide the mathematical foundations for this work. In the current report, we fill this void with the complete derivation of the formulas which we used in the divergence statistics engine. This provides the foundations for future work which will aim at generalizing these formulas for more detailed HPC performance analysis.

More Details

We function as one: How coalition sites produce integrated intelligence

Proposed Journal Article, unpublished

Ganter, John H.

Integrated intelligence is an accomplishment: a new holistic picture that explains what, why, and how. Integrated intelligence is also a process, a "unity of effort to produce the best intelligence possible" [1] that is fueled by sensors and computing but driven by informal practices [2] of human insight, discovery, creativity, and invention. To understand and potentially replicate these successes we studied coalition sites noted for integrated intelligence breakthroughs.

More Details

The Meshing Complexity of a Solid: An Introduction

Leland, Robert W.; White, David R.; Owen, Steven J.; Saigal, Sunil

This paper explores potential methods for characterizing the meshing complexity of solid geometry. While numerous metrics exist to measure the quality of the finite element, there are currently no metrics that measure the quality of a solid with respect to its meshing complexity. The meshing complexity of a solid is defined by how difficult it is to generate a valid finite element mesh for a given solid. There are many variables that affect meshing complexity. This paper seeks to discuss methods that are decoupled from more subjective variables such as user expertise and software maturity, and it will focus on methods that describe the topological and geometric aspects of a solid. It will present techniques based on: medial axis transformation, wavelets, curvature, proximity, intersection, heuristic topology search, and the measurement of space (volume/area/length) and will analyze their suitability as meshing complexity metrics.

More Details

Draft Operating Procedures for a Generic Repository Licensing Organization

Appel, Gordon J.; Haverlock, Todd A.

This document is milestone M4FT-15SN0826021: Draft Summary of principle operating procedures for a generic repository licensing organization, the result of efforts under work package FT-15SN082602 DOE Managed HLW and SNF Research: Generic Operating Procedures; e.g., Quality Assurance — Sandia National Laboratories (SNL). The objective of this effort was to develop this draft document identifying and summarizing the principle operating procedures for a generic repository licensing organization. The FY16 follow on work package is FT-165N050303: Develop and Implement Operating Procedures — SNL, having a consistent objective to develop a draft document identifying and summarizing the principle operating procedures for a generic repository licensing organization. This document identifies and describes the principle operating procedures for a hypothetical and generic organization with the responsibility to site, characterize, design, license, construct and operate a repository for the disposal of high-level radioactive waste (HLW) and spent nuclear fuel (SNF) managed by the Department of Energy. These principle operating procedures reflect practices that facilitate compliance with U.S. Nuclear Regulatory Commission (NRC) expectations and NQA-1 quality standards.

More Details

Draft Infrastructure Framework for a Generic Repository Licensing Organization

Appel, Gordon J.; Haverlock, Todd A.

This document is milestone M4FT-15SN0826011: Draft Summary of generic repository licensing infrastructure, the result of efforts under work Package FT-15SN082601 DOE Managed HLW and SNF Research: Establish a generic organization framework for records management, IT infrastructure, quality assurance, and systems engineering - Sandia National Laboratories (SNL). The objective of this effort was to develop this draft document identifying and summarizing the principle elements of a generic repository licensing infrastructure organizational framework. The FY16 follow on work package is FT-16SN050302- Establish organizational framework to meet regulator expectations - SNL, having the consistent objective to 'Develop a draft document identifying and summarizing the principle elements of a generic repository licensing infrastructure and organizational framework.' This document describes the framework for a generic hypothetical organization with the responsibility to site, characterize, design, license construct and operate a repository for the disposal of high-level radioactive waste (HLW) and spent nuclear fuel ( F) managed by the Department of Energy. organizational framework suggested is intended to be agnostic of the facility location and disposal medium. It is assumed that the facility is to be licensed under U.S. Nuclear Regulatory Commission (NRC) regulation with DOE as the applicant (licensee). Detailed organizational elements reflect a workforce composition and practices that facilitate compliance with NRC expectations and NQA-1 quality standards.

More Details

National Rotor Testbed Requirements. Draft

Resor, Brian R.

This document serves both as a guide and a record for requirements management associated with design of retrofit rotors for the Sandia SWiFT turbines. The rotors will support a long-term experimental campaign. Data gathered during the campaign will support formal verification and validation of complex flow numerical models for prediction of metrics deemed important for wind energy plant efficiency. These integrated projects involve multiple years of effort, dozens of engineers and collaborators, and dozens of stakeholders in the form of the research community, National Lab staff, and DOE staff. Creating of formal, written requirements will ensure flow-down of activities from high-level goals, aid communication, and enable clear verification of activities. A custom requirements schema is created and described. Commercial requirements management software —IBM Rational DOORS—is used to organize the information and ensure traceability. This document serves as a record of the process as well as a record of the exported, detailed contents of the DOORS database.

More Details

II.B.3 Battery Safety Testing (SNL)

Orendorff, Christopher; Lamb, Joshua; Steele, Leigh A.M.

Objectives are: Serve as an independent abuse test laboratory for DOE and USABC; Abuse testing in accordance with the USABC abuse testing manual; Successful testing of all deliverables from developers under USABC contracts; Revise the USABC abuse testing manual; Test the propensity towards propagation of cell failure through multiple cell batteries; Provide mechanical testing support to develop and validate mechanical models for EV batteries; and, Evaluate the effect of cell age on abuse response.

More Details

Albedo and Diffuse POA Measurements to Evaluate Transposition Model Uncertainty

Lave, Matt

Albedo and diffuse plane of array (DPOA) measurements are used in addition to standard global horizontal irradiance (GHI), direct normal irradiance (DNI), diffuse horizontal irradiance (DNI), and plane of array irradiance (POA) measurements to determine the impact of albedo on transposition model performance. Albedo measurements averaged 0.214. Daily albedo values ranged from 0.148 to 0.236 and were found to be correlated to daily relative humidity. DPOA measurements were compared to calculated DPOA values (from POA and DNI), and helped identify a suspected deviation from due south in the azimuth of the POA measurement. Since the measured albedo average was close to the typical fixed $^{albedo = 0.2}$ assumption, little difference was seen between using measured and fixed albedo (~0.15% differences in mean bias difference (MBD) and root mean squared difference (RMSD)). However, evaluation of transposition models at other fixed albedos showed an albedo change of 0.1 is found to increase total modeled insolation by approximately 1%. Thus, for locations with different ground surfaces (e.g., persistent snow cover of black surfaces), the impact of using measured albedo instead of the fixed $^{albedo = 0.2}$ assumption may be greater. Measurement deviations resulted in up to 2% changes in MBD and RIVISD when switching between interrelated measurements (e.g., GHI and DHI as inputs to transposition models versus DNI and DHI as inputs). Variation among transposition models was also up to 2% MBD and RMSD. Thus, for this data set, measurement deviation and transposition model selection are found to have more impact than using measured albedo instead fixed albedo.

More Details

Executing BISON-CASL Fuel Performance Cases Using VERA-CS Output

Pawlowski, Roger

As the Consortium for Advanced Simulation of Light Water Reactors (CASL) moves forward with more complex multiphysics simulations, there is increased focus on incorporating fuel performance analysis methods. The coupled neutronics/thermal-hydraulics capabilities within the Virtual Environment for Reactor Applications Core Simulator (VERA-CS) have become relatively stable and major advances have been made in analysis efforts, including the simulations of twelve cycles of Watts Bar Nuclear Unit 1 (WBN1) operation. However, VERA-CS approaches for treating fuel pin heat transfer have well-known limitations that could be eliminated through better integration with the BISON-CASL fuel performance code. Several approaches are being taken to improve or replace the VERA-CS fuel models and improve integration with BISON-CASL. Tiamat is being developed to replace the fuel models with a direct coupling of BISON-CASL and the neutronics and coolant heat transfer of VERA-CS. Tiamat will execute in an inline mode that allows for in-memory transfer of VERA-CS data to BISON-CASL. This will provide fuel performance results during core simulation. However, fuel performance typically undergoes an independent analysis using a stand-alone fuel performance code with manually specified input defined from an independent core simulator solution or set of assumptions. This milestone covers initial efforts to facilitate using VERA for core simulation and fuel performance to operate in this mode of execution. This approach will be used for several CASL fuel performance challenges, such as RIAs and DNB. These issues require time-dependent full core results to establish the boundary conditions for the high-fidelity BISON-CASL simulations. The approach will also be used to improve fuel temperature models in VERA-CS, guide the development of Tiamat, and simplify the use of BISON-CASL within VERA for industry users.

More Details

Potential revenue from electrical energy storage in ERCOT: The impact of location and recent trends

IEEE Power and Energy Society General Meeting

Byrne, Raymond H.; Silva-Monroy, Cesar A.

This paper outlines the calculations required to estimate the maximum potential revenue from participation in arbitrage and regulation in day-ahead markets using linear programming. Then, we use historical Electricity Reliability Council of Texas (ERCOT) data from 2011-2013 to evaluate the maximum potential revenue from a hypothetical 32 MWh, 8 MW system. We investigate the maximum potential revenue from two different scenarios: arbitrage only and arbitrage combined with regulation. This analysis was performed for each load zone over the same period to show the impact of location and to identify trends in the opportunities for energy storage. Our analysis shows that, with perfect foresight, participation in the regulation market would have produced more than twice the revenue compared to arbitrage in the ERCOT market in 2011-2013. Over the last three years, there has been a significant decrease in the potential revenue for an energy storage system. We also quantify the impact of location on potential revenue.

More Details

Improving distribution network PV hosting capacity via smart inverter reactive power support

IEEE Power and Energy Society General Meeting

Seuss, John; Reno, Matthew J.; Broderick, Robert J.; Grijalva, Santiago

Many utilities today have a large number of interconnection requests for new PV installations on their distribution networks. Interconnections should be approved in a timely manner but without compromising network reliability. It is thus important to know a network's PV hosting capacity, which defines the upper bound of PV sizes that pose no risk to the network. This paper investigates how implementing reactive power control on the PV inverter impacts the PV hosting capacity of a distribution network. A local Volt-Var droop control is used and simulations are performed in OpenDSS and Matlab. Multiple feeders are tested and it is found that the control greatly improves the overall hosting capacity of the feeder as well as the locational hosting capacity of most voltage constrained buses.

More Details

Improving distribution network PV hosting capacity via smart inverter reactive power support

IEEE Power and Energy Society General Meeting

Seuss, John; Reno, Matthew J.; Broderick, Robert J.; Grijalva, Santiago

Many utilities today have a large number of interconnection requests for new PV installations on their distribution networks. Interconnections should be approved in a timely manner but without compromising network reliability. It is thus important to know a network's PV hosting capacity, which defines the upper bound of PV sizes that pose no risk to the network. This paper investigates how implementing reactive power control on the PV inverter impacts the PV hosting capacity of a distribution network. A local Volt-Var droop control is used and simulations are performed in OpenDSS and Matlab. Multiple feeders are tested and it is found that the control greatly improves the overall hosting capacity of the feeder as well as the locational hosting capacity of most voltage constrained buses.

More Details

Methodology for Preliminary Design of Electrical Microgrids

Jensen, Richard P.; Stamp, Jason E.; Eddy, John P.; Henry, Jordan M.; Munoz-Ramos, Karina; Abdallah, Tarek

Many critical loads rely on simple backup generation to provide electricity in the event of a power outage. An Energy Surety Microgrid TM can protect against outages caused by single generator failures to improve reliability. An ESM will also provide a host of other benefits, including integration of renewable energy, fuel optimization, and maximizing the value of energy storage. The ESM concept includes a categorization for microgrid value proposi- tions, and quantifies how the investment can be justified during either grid-connected or utility outage conditions. In contrast with many approaches, the ESM approach explic- itly sets requirements based on unlikely extreme conditions, including the need to protect against determined cyber adversaries. During the United States (US) Department of Defense (DOD)/Department of Energy (DOE) Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) effort, the ESM methodology was successfully used to develop the preliminary designs, which direct supported the contracting, construction, and testing for three military bases. Acknowledgements Sandia National Laboratories and the SPIDERS technical team would like to acknowledge the following for help in the project: * Mike Hightower, who has been the key driving force for Energy Surety Microgrids * Juan Torres and Abbas Akhil, who developed the concept of microgrids for military installations * Merrill Smith, U.S. Department of Energy SPIDERS Program Manager * Ross Roley and Rich Trundy from U.S. Pacific Command * Bill Waugaman and Bill Beary from U.S. Northern Command * Melanie Johnson and Harold Sanborn of the U.S. Army Corps of Engineers Construc- tion Engineering Research Laboratory * Experts from the National Renewable Energy Laboratory, Idaho National Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory

More Details

Empirical Kinetics and Their Role in Elucidating the Utility of Transition-State Theory to Mineral–Water Reactions: A comment upon, “Evidence and Potential Implications of Exponential Tails to Concentration Versus Time Plots for the Batch Dissolution of Calcite” by V. W. Truesdale

Aquatic Geochemistry

Icenhower, Jonathan

Transition-state theory (TST) is a successful theory for understanding many different types of reactions, but its application to mineral–water systems has not been successful, especially as the system approaches saturation with respect to a rate-limiting phase. A number of investigators have proposed alternate frameworks for using the kinetic rate data to construct models of dissolution, including Truesdale (Aquat Geochem, 2015; this issue). This alternate approach has been resisted, in spite of self-evident discrepancies between TST expectations and the data. The failure of TST under certain circumstances is a result of the presence of metastable intermediaries or reaction layers that form on the surface of reacting solids, and these phenomena are not anticipated by the current theory. Therefore, alternate approaches, such as the shrinking object model advocated by Truesdale, represent a potentially important avenue for advancing the science of dissolution kinetics.

More Details

Two-level main memory co-design: Multi-threaded algorithmic primitives, analysis, and simulation

Proceedings - 2015 IEEE 29th International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2015

Bender, Michael A.; Berry, Jonathan; Hammond, Simon; Hemmert, Karl S.; Mccauley, Samuel; Moore, Branden J.; Moseley, Benjamin; Phillips, Cynthia A.; Resnick, David R.; Rodrigues, Arun

A fundamental challenge for supercomputer architecture is that processors cannot be fed data from DRAM as fast as CPUs can consume it. Therefore, many applications are memory-bandwidth bound. As the number of cores per chip increases, and traditional DDR DRAM speeds stagnate, the problem is only getting worse. A variety of non-DDR 3D memory technologies (Wide I/O 2, HBM) offer higher bandwidth and lower power by stacking DRAM chips on the processor or nearby on a silicon interposer. However, such a packaging scheme cannot contain sufficient memory capacity for a node. It seems likely that future systems will require at least two levels of main memory: high-bandwidth, low-power memory near the processor and low-bandwidth high-capacity memory further away. This near memory will probably not have significantly faster latency than the far memory. This, combined with the large size of the near memory (multiple GB) and power constraints, may make it difficult to treat it as a standard cache. In this paper, we explore some of the design space for a user-controlled multi-level main memory. We present algorithms designed for the heterogeneous bandwidth, using streaming to exploit data locality. We consider algorithms for the fundamental application of sorting. Our algorithms asymptotically reduce memory-block transfers under certain architectural parameter settings. We use and extend Sandia National Laboratories' SST simulation capability to demonstrate the relationship between increased bandwidth and improved algorithmic performance. Memory access counts from simulations corroborate predicted performance. This co-design effort suggests implementing two-level main memory systems may improve memory performance in fundamental applications.

More Details

Introduction to the Special Issue on Innovative Applications of Artificial Intelligence 2014

AI Magazine

Stracuzzi, David J.; Gunning, David

This issue features expanded versions of articles selected from the 2014 AAAI Conference on Innovative Applications of Artificial Intelligence held in Quebec City, Canada. We present a selection of four articles describing deployed applications plus two more articles that discuss work on emerging applications.

More Details

Demonstration of long minority carrier lifetimes in very narrow bandgap ternary InAs/GaInSb superlattices

Applied Physics Letters

Olson, Benjamin V.; Kim, Jin K.; Kadlec, Emil A.; Shaner, Eric A.; Haugan, Heather J.; Brown, Gail J.

Minority carrier lifetimes in very long wavelength infrared (VLWIR) InAs/GaInSb superlattices (SLs) are reported using time-resolved microwave reflectance measurements. A strain-balanced ternary SL absorber layer of 47.0 Å InAs/21.5 Å Ga0.75In0.25Sb, corresponding to a bandgap of ~50 meV, is found to have a minority carrier lifetime of 140 ± 20 ns at ~18 K. This lifetime is extraordinarily long, when compared to lifetime values previously reported for other VLWIR SL detector materials. As a result, this enhancement is attributed to the strain-engineered ternary design, which offers a variety of epitaxial advantages and ultimately leads to a reduction of defect-mediated recombination centers.

More Details

Training neural hardware with noisy components

Proceedings of the International Joint Conference on Neural Networks

Rothganger, Fredrick R.; Evans, Brian R.; Aimone, James B.; Debenedictis, Erik

Some next generation computing devices may consist of resistive memory arranged as a crossbar. Currently, the dominant approach is to use crossbars as the weight matrix of a neural network, and to use learning algorithms that require small incremental weight updates, such as gradient descent (for example Backpropagation). Using real-world measurements, we demonstrate that resistive memory devices are unlikely to support such learning methods. As an alternative, we offer a random search algorithm tailored to the measured characteristics of our devices.

More Details

Repeated play of the SVM game as a means of adaptive classification

Proceedings of the International Joint Conference on Neural Networks

Vineyard, Craig M.; Verzi, Stephen J.; James, Conrad D.; Aimone, James B.; Heileman, Gregory L.

The field of machine learning strives to develop algorithms that, through learning, lead to generalization; that is, the ability of a machine to perform a task that it was not explicitly trained for. An added challenge arises when the problem domain is dynamic or non-stationary with the data distributions or categorizations changing over time. This phenomenon is known as concept drift. Game-theoretic algorithms are often iterative by nature, consisting of repeated game play rather than a single interaction. Effectively, rather than requiring extensive retraining to update a learning model, a game-theoretic approach can adjust strategies as a novel approach to concept drift. In this paper we present a variant of our Support Vector Machine (SVM) Game classifier which may be used in an adaptive manner with repeated play to address concept drift, and show results of applying this algorithm to synthetic as well as real data.

More Details

FY:15 Transport Properties of Run-of-Mine Salt Backfill ? Unconsolidated to Consolidated

Dewers, Thomas; Heath, Jason E.; Leigh, Christi

The nature of geologic disposal of nuclear waste in salt formations requires validated and verified two-phase flow models of transport of brine and gas through intact, damaged, and consolidating crushed salt. Such models exist in other realms of subsurface engineering for other lithologic classes (oil and gas, carbon sequestration etc. for clastics and carbonates) but have never been experimentally validated and parameterized for salt repository scenarios or performance assessment. Models for waste release scenarios in salt back-fill require phenomenological expressions for capillary pressure and relative permeability that are expected to change with degree of consolidation, and require experimental measurement to parameterize and validate. This report describes a preliminary assessment of the influence of consolidation (i.e. volume strain or porosity) on capillary entry pressure in two phase systems using mercury injection capillary pressure (MICP). This is to both determine the potential usefulness of the mercury intrusion porosimetry method, but also to enable a better experimental design for these tests. Salt consolidation experiments are performed using novel titanium oedometers, or uniaxial compression cells often used in soil mechanics, using sieved run-of-mine salt from the Waste Isolation Pilot Plant (WIPP) as starting material. Twelve tests are performed with various starting amounts of brine pore saturation, with axial stresses up to 6.2 MPa (~900 psi) and temperatures to 90°C. This corresponds to UFD Work Package 15SN08180211 milestone “FY:15 Transport Properties of Run-of-Mine Salt Backfill – Unconsolidated to Consolidated”. Samples exposed to uniaxial compression undergo time-dependent consolidation, or creep, to various degrees. Creep volume strain-time relations obey simple log-time behavior through the range of porosities (~50 to 2% as measured); creep strain rate increases with temperature and applied stress as expected. Mercury porosimetry is used to determine characteristic capillary pressure curves from a series of consolidation tests and show characteristic saturation-capillary pressure curves that follow the common van Genuchten (1978, 1980) formulation at low stresses. Higher capillary pressure data are suspect due to the large potential for sample damage, including fluid inclusion decrepitation and pore collapse. Data are supportive of use of the Leverett “J” function (Leverett, 1941) to use for scaling characteristic curves at different degrees of consolidation, but better permeability determinations are needed to support this hypothesis. Recommendations for further and refined testing are made with the goal of developing a self- consistent set of constitutive laws for granular salt consolidation and multiphase (brine-air) flow.

More Details

Intercomparison of 3D pore-scale flow and solute transport simulation methods

Advances in Water Resources

Mehmani, Yashar; Schoenherr, Martin; Pasquali, Andrea; Clark, Colin; Perkins, William A.; Kim, Kyungjoo; Perego, Mauro; Parks, Michael L.; Balhoff, Matthew T.; Richmond, Marshall C.; Geier, Martin; Krafczyk, Manfred; Luo, Li S.; Tartakovsky, Alexandre M.; Winter, C.L.

Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based on the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This paper provides support for confidence in a variety of pore-scale modeling methods and motivates further development and application of pore-scale simulation methods.

More Details

Solvent controlled ion association in structured copolymers: Molecular dynamics simulations in dilute solutions

Journal of Chemical Physics

Aryal, Dipak; Perahia, Dvora; Grest, Gary S.

Tailoring the nature of individual segments within ion containing block co-polymers is one critical design tool to achieve desired properties. The local structure including the size and distribution of the ionic blocks, as well as the long range correlations, are crucial for their transport ability. Here, we present molecular dynamics simulations on the effects of varying the concentrations of the ionizable groups on the conformations of pentablock ionomer that consist of a center block of ionic sulfonated styrene tethered to polyethylene and terminated by a bulky substituted styrene in dilute solutions. Sulfonation fractions f (0 ≤ f ≤ 0.55), spanning the range from ionomer to polyelectrolytes, were studied. Results for the equilibrium conformation of the chains in water and a 1:1 mixture of cyclohexane and heptane are compared to that in implicit poor solvents with dielectric constants ε = 1.0 and 77.73. In water, the pentablock collapses with the sulfonated groups on the outer surface. As f increases, the ionic, center block increasingly segregates from the hydrophobic regions. In the 1:1 mixture of cyclohexane and heptane, the flexible blocks swell, while the center ionic block collapses for f > 0. For f = 0, all blocks swell. In both implicit poor solvents, the pentablock collapses into a nearly spherical shape for all f. The sodium counterions disperse widely throughout the simulation cell for both water and ε = 77.73, whereas for ε = 1.0 and mixture of cyclohexane and heptane, the counterions largely condense onto the collapsed pentablock.

More Details

Ammonia and methane dairy emissions in the San Joaquin Valley of California from individual feedlot to regional scale

Journal of Geophysical Research: Atmospheres

Miller, David J.; Sun, Kang; Tao, Lei; Nowak, John B.; Liu, Zhen; Diskin, Glenn; Sasche, Glen; Beyersdorf, Andreas; Ferrare, Richard; Scarino, Amy J.; Zondlo, Mark A.

Agricultural ammonia (NH3) emissions are highly uncertain, with high spatiotemporal variability and a lack of widespread in situ measurements. Regional NH3 emission estimates using mass balance or emission ratio approaches are uncertain due to variable NH3 sources and sinks as well as unknown plume correlations with other dairy source tracers. We characterize the spatial distributions of NH3 and methane (CH4) dairy plumes using in situ surface and airborne measurements in the Tulare dairy feedlot region of the San Joaquin Valley, California, during the NASA Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality 2013 field campaign. Surface NH3 and CH4 mixing ratios exhibit large variability with maxima localized downwind of individual dairy feedlots. The geometric mean NH3:CH4 enhancement ratio derived from surface measurements is 0.15 ± 0.03 ppmv ppmv–1. Individual dairy feedlots with spatially distinct NH3 and CH4 source pathways led to statistically significant correlations between NH3 and CH4 in 68% of the 69 downwind plumes sampled. At longer sampling distances, the NH3:CH4 enhancement ratio decreases 20–30%, suggesting the potential for NH3 deposition as a loss term for plumes within a few kilometers downwind of feedlots. Aircraft boundary layer transect measurements directly above surface mobile measurements in the dairy region show comparable gradients and geometric mean enhancement ratios within measurement uncertainties, even when including NH3 partitioning to submicron particles. Individual NH3 and CH4 plumes sampled at close proximity where losses are minimal are not necessarily correlated due to lack of mixing and distinct source pathways. As a result, our analyses have important implications for constraining NH3 sink and plume variability influences on regional NH3 emission estimates and for improving NH3 emission inventory spatial allocations.

More Details

Water versus DNA: New insights into proton track-structure modelling in radiobiology and radiotherapy

Physics in Medicine and Biology

Champion, C.; Quinto, M.A.; Monti, J.M.; Galassi, M.E.; Weck, Philippe F.; Fojon, O.A.; Hanssen, J.; Rivarola, R.D.

Water is a common surrogate of DNA for modelling the charged particle-induced ionizing processes in living tissue exposed to radiations. The present study aims at scrutinizing the validity of this approximation and then revealing new insights into proton-induced energy transfers by a comparative analysis between water and realistic biological medium. In this context, a self-consistent quantum mechanical modelling of the ionization and electron capture processes is reported within the continuum distorted wave-eikonal initial state framework for both isolated water molecules and DNA components impacted by proton beams. Their respective probability of occurrence - expressed in terms of total cross sections - as well as their energetic signature (potential and kinetic) are assessed in order to clearly emphasize the differences existing between realistic building blocks of living matter and the controverted water-medium surrogate. Consequences in radiobiology and radiotherapy will be discussed in particular in view of treatment planning refinement aiming at better radiotherapy strategies.

More Details

2D laser-collision induced fluorescence in low-pressure argon discharges

Plasma Sources Science and Technology

Barnat, Edward

Development and application of laser-collision induced fluorescence (LCIF) diagnostic technique is presented for the use of interrogating argon plasma discharges. Key atomic states of argon utilized for the LCIF method are identified. A simplified two-state collisional radiative model is then used to establish scaling relations between the LCIF, electron density, and reduced electric fields (E/N). The procedure used to generate, detect and calibrate the LCIF in controlled plasma environments is discussed in detail. LCIF emanating from an argon discharge is then presented for electron densities spanning 109 e cm-3 to 1012 e cm-3 and reduced electric fields spanning 0.1 Td to 40 Td. Finally, application of the LCIF technique for measuring the spatial distribution of both electron densities and reduced electric field is demonstrated.

More Details

High damage tolerance of electrochemically lithiated silicon

Nature Communications

Wang, Xueju; Fan, Feifei; Wang, Jiangwei; Wang, Haoran; Tao, Siyu; Yang, Avery; Liu, Yang; Beng Chew, Huck; Mao, Scott X.; Zhu, Ting; Xia, Shuman

Mechanical degradation and resultant capacity fade in high-capacity electrode materials critically hinder their use in high-performance rechargeable batteries. Despite tremendous efforts devoted to the study of the electro-chemo-mechanical behaviours of high-capacity electrode materials, their fracture properties and mechanisms remain largely unknown. Here we report a nanomechanical study on the damage tolerance of electrochemically lithiated silicon. Our in situ transmission electron microscopy experiments reveal a striking contrast of brittle fracture in pristine silicon versus ductile tensile deformation in fully lithiated silicon. Quantitative fracture toughness measurements by nanoindentation show a rapid brittle-to-ductile transition of fracture as the lithium-to-silicon molar ratio is increased to above 1.5. Molecular dynamics simulations elucidate the mechanistic underpinnings of the brittle-to-ductile transition governed by atomic bonding and lithiation-induced toughening. Our results reveal the high damage tolerance in amorphous lithium-rich silicon alloys and have important implications for the development of durable rechargeable batteries.

More Details

Conceptual Design and Requirements for Characterization and Field Test Boreholes: Deep Borehole Field Test

Kuhlman, Kristopher L.; Brady, Patrick V.; Mackinnon, Robert J.; Heath, Jason E.; Herrick, Courtney G.; Jensen, Richard P.; Rigali, Mark J.; Hadgu, Teklu; Sevougian, Stephen D.; Birkholzer, Jens; Freifeld, Barry M.; Daley, Tom

Deep Borehole Disposal (DBD) of high-level radioactive wastes has been considered an option for geological isolation for many years (Hess et al. 1957). Recent advances in drilling technology have decreased costs and increased reliability for large-diameter (i.e., ≥50 cm [19.7”]) boreholes to depths of several kilometers (Beswick 2008; Beswick et al. 2014). These advances have therefore also increased the feasibility of the DBD concept (Brady et al. 2009; Cornwall 2015), and the current field test, introduced herein, is a demonstration of the DBD concept and these advances.

More Details

An improved understanding of the natural resonances of moonpools contained within floating rigid-bodies: Theory and application to oscillating water column devices

Ocean Engineering

Bull, Diana L.

The fundamental interactions between waves, a floating rigid-body, and a moonpool that is selectively open to atmosphere or enclosed to purposefully induce pressure fluctuations are investigated. The moonpool hydrodynamic characteristics and the hydrodynamic coupling to the rigid-body are derived implicitly through reciprocity relations on an array of field points. By modeling the free surface of the moonpool in this manner, an explicit hydrodynamic coupling term is included in the equations of motion. This coupling results in the migration of the moonpool's natural resonance frequency from the piston frequency to a new frequency when enclosed in a floating rigid-body. Two geometries that highlight distinct aspects of marine vessels and oscillating water column (OWC) renewable energy devices are analyzed to reveal the coupled natural resonance migration. The power performance of these two OWCs in regular waves is also investigated. The air chamber is enclosed and a three-dimensional, linear, frequency domain performance model that links the rigid-body to the moonpool through a linear resistive control strategy is detailed. Furthermore, an analytic expression for the optimal linear resistive control values in regular waves is presented.

More Details

Virtual strain gage size study

Experimental Techniques

Reu, P.L.

DIC is a non-linear low-pass spatial filtering operation; whether we consider the effect of the subset and shape function, the strain window used in the strain calculation, of other post-processing of the results, each decision will impact the spatial resolution, of the measurement. More fundamentally, the speckle size limits, the spatial resolution by dictating the smallest possible subset. After this decision the processing settings are controlled by the allowable noise level balanced by possible bias errors created by the data filtering. This article describes a process to determine optimum DIC software settings to determine if the peak displacements or strains are being found.

More Details

Strategies for obtaining long constant-pressure test times in shock tubes

Shock Waves

Campbell, Matthew F.; Parise, T.; Tulgestke, A.M.; Spearrin, R.M.; Davidson, D.F.; Hanson, R.K.

Several techniques have been developed for obtaining long, constant-pressure test times in reflected shock wave experiments in a shock tube, including the use of driver inserts, driver gas tailoring, helium gas diaphragm interfaces, driver extensions, and staged driver gas filling. Here, we detail these techniques, including discussion on the most recent strategy, staged driver gas filling. Experiments indicate that this staged filling strategy increases available test time by roughly 20 % relative to single-stage filling of tailored driver gas mixtures, while simultaneously reducing the helium required per shock by up to 85 %. This filling scheme involves firstly mixing a tailored helium–nitrogen mixture in the driver section as in conventional driver filling and, secondly, backfilling a low-speed-of-sound gas such as nitrogen or carbon dioxide from a port close to the end cap of the driver section. Using this staged driver gas filling, in addition to the other techniques listed above, post-reflected shock test times of up to 0.102 s (102 ms) at 524 K and 1.6 atm have been obtained. Spectroscopically based temperature measurements in non-reactive mixtures have confirmed that temperature and pressure conditions remain constant throughout the length of these long test duration trials. Finally, these strategies have been used to measure low-temperature n-heptane ignition delay times.

More Details

Mechanical Flip-Chip for Ultra-High Electron Mobility Devices

Scientific Reports

Bennaceur, Keyan; Schmidt, Benjamin A.; Gaucher, Samuel; Laroche, D.; Lilly, Michael; Reno, John L.; West, Ken W.; Pfeiffer, Loren N.; Gervais, Guillaume

Electrostatic gates are of paramount importance for the physics of devices based on high-mobility two-dimensional electron gas (2DEG) since they allow depletion of electrons in selected areas. This field-effect gating enables the fabrication of a wide range of devices such as, for example, quantum point contacts (QPC), electron interferometers and quantum dots. To fabricate these gates, processing is usually performed on the 2DEG material, which is in many cases detrimental to its electron mobility. Here we propose an alternative process which does not require any processing of the 2DEG material other than for the ohmic contacts. This approach relies on processing a separate wafer that is then mechanically mounted on the 2DEG material in a flip-chip fashion. This technique proved successful to fabricate quantum point contacts on both GaAs/AlGaAs materials with both moderate and ultra-high electron mobility.

More Details

Temperature-dependent optical measurements of the dominant recombination mechanisms in InAs/InAsSb type-2 superlattices

Journal of Applied Physics

Olson, Benjamin V.; Shaner, Eric A.; Kim, Jin K.; Hawkins, Samuel D.; Klem, John F.; Boggoss, Thomas F.; Flatte, Michael E.; Aytac, Yigit

We present that temperature-dependent measurements of carrier recombination rates using a time-resolved optical pump-probe technique are reported for mid-wave infrared InAs/InAs1-xSbx type-2 superlattices (T2SLs). By engineering the layer widths and alloy compositions, a 16 K band-gap of ~235 ± 10 meV was achieved for five unintentionally and four intentionally doped T2SLs. Carrier lifetimes were determined by fitting lifetime models based on Shockley-Read-Hall (SRH), radiative, and Auger recombination processes to the temperature and excess carrier density dependent data. The minority carrier (MC), radiative, and Auger lifetimes were observed to generally increase with increasing antimony content and decreasing layer thickness for the unintentionally doped T2SLs. The MC lifetime is limited by SRH processes at temperatures below 200 K in the unintentionally doped T2SLs. The extracted SRH defect energy levels were found to be near mid-bandgap. Additionally, it is observed that the MC lifetime is limited by Auger recombination in the intentionally doped T2SLs with doping levels greater than n ~1016 cm-3.

More Details

Modeling of hydride precipitation and re-orientation

Tikare, Veena; Weck, Philippe F.; Mitchell, John A.

In this report, we present a thermodynamic-­based model of hydride precipitation in Zr-based claddings. The model considers the state of the cladding immediately following drying, after removal from cooling-pools, and presents the evolution of precipitate formation upon cooling as follows: The pilgering process used to form Zr-based cladding imparts strong crystallographic and grain shape texture, with the basal plane of the hexagonal α-Zr grains being strongly aligned in the rolling-­direction and the grains are elongated with grain size being approximately twice as long parallel to the rolling direction, which is also the long axis of the tubular cladding, as it is in the orthogonal directions.

More Details

Microstructure-sensitive small fatigue crack growth assessment. Effect of strain ratio multiaxial strain state and geometric discontinuities

International Journal of Fatigue

Castelluccio, Gustavo M.; Mcdowell, David L.

Fatigue crack initiation in the high cycle fatigue regime is strongly influenced by microstructural features. Research efforts have usually focused on predicting fatigue resistance against crack incubation without considering the early fatigue crack growth after encountering the first grain boundary. However, a significant fraction of the variability of the total fatigue life can be attributed to growth of small cracks as they encounter the first few grain boundaries, rather than crack formation within the first grain. Our paper builds on the framework previously developed by the authors to assess microstructure-sensitive small fatigue crack formation and early growth under complex loading conditions. Moreover, the scheme employs finite element simulations that explicitly render grains and crystallographic directions along with simulation of microstructurally small fatigue crack growth from grain to grain. The methodology employs a crystal plasticity algorithm in ABAQUS that was previously calibrated to study fatigue crack initiation in RR1000 Ni-base superalloy. Our work present simulations with non-zero applied mean strains and geometric discontinuities that were not previously considered for calibration. Results exhibit trends similar to those found in experiments for multiple metallic materials, conveying a consistent physical description of fatigue damage phenomena.

More Details

Atom-scale covalent electrochemical modification of single-layer graphene on SiC substrates by diaryliodonium salts

Journal of Electroanalytical Chemistry

Gearba, Raluca I.; Mueller, Kory M.; Veneman, Peter A.; Holliday, Bradley J.; Chan, Calvin; Stevenson, Keith J.

Owing to its high conductivity, graphene holds promise as an electrode for energy devices such as batteries and photovoltaics. However, to this end, the work function and doping levels in graphene need to be precisely tuned. One promising route for modifying graphene's electronic properties is via controlled covalent electrochemical grafting of molecules. We show that by employing diaryliodonium salts instead of the commonly used diazonium salts, spontaneous functionalization is avoided. This allows for precise tuning of the grafting density. By employing bis(4-nitrophenyl)iodonium(III) tetrafluoroborate (DNP) salt calibration curves, the surface functionalization density (coverage) of glassy carbon was controlled using cyclic voltammetry in varying salt concentrations. These electro-grafting conditions and calibration curves translated directly over to modifying single layer epitaxial graphene substrates (grown on insulating 6H-SiC (0 0 0 1)). In addition to quantifying the functionalization densities using electrochemical methods, samples with low grafting densities were characterized by low-temperature scanning tunneling microscopy (LT-STM). We show that the use of buffer-layer free graphene substrates is required for clear observation of the nitrophenyl modifications. Atomically-resolved STM images of single site modifications were obtained, showing no preferential grafting at defect sites or SiC step edges as supposed previously in the literature. Most of the grafts exhibit threefold symmetry, but occasional extended modifications (larger than 4 nm) were observed as well.

More Details

In situ characterization of the formation of a mixed conducting phase on the surface of yttria-stabilized zirconia near Pt electrodes

Physical Review. B, Condensed Matter and Materials Physics

Siegel, D.A.; El Gabaly, Farid; Mccarty, K.F.; Bartelt, Norman C.

The electrochemical reactions of solid oxide fuel cells occur in the region where gas-phase species, electrode, and electrolyte coincide. When the electrode is an ionic insulator and the electrolyte is an electronic insulator, this triple phase boundary is assumed to have atomic dimensions. For this study, we use photoemission electron microscopy to show that the reduced surface of the electrolyte yttria-stabilized zirconia (YSZ) has a sharp electronic metal-insulator boundary near Pt negative electrodes. The electronic conductivity of the reduced YSZ allows for oxygen reduction, allowing the reduced YSZ to behave as an extended triple phase boundary. This extended triple phase boundary can be many microns in size, depending on oxygen pressure, temperature, applied voltage, and time.

More Details

Evaluation of Geometrically Nonlinear Reduced Order Models with Nonlinear Normal Modes

AIAA Journal

Kuether, Robert J.; Deaner, Brandon J.; Hollkamp, Joseph J.; Allen, Matthew S.

Several reduced-order modeling strategies have been developed to create low-order models of geometrically nonlinear structures from detailed finite element models, allowing one to compute the dynamic response of the structure at a dramatically reduced cost. But, the parameters of these reduced-order models are estimated by applying a series of static loads to the finite element model, and the quality of the reduced-order model can be highly sensitive to the amplitudes of the static load cases used and to the type/number of modes used in the basis. Our paper proposes to combine reduced-order modeling and numerical continuation to estimate the nonlinear normal modes of geometrically nonlinear finite element models. Not only does this make it possible to compute the nonlinear normal modes far more quickly than existing approaches, but the nonlinear normal modes are also shown to be an excellent metric by which the quality of the reduced-order model can be assessed. Hence, the second contribution of this work is to demonstrate how nonlinear normal modes can be used as a metric by which nonlinear reduced-order models can be compared. Moreover, various reduced-order models with hardening nonlinearities are compared for two different structures to demonstrate these concepts: a clamped–clamped beam model, and a more complicated finite element model of an exhaust panel cover.

More Details

Mechanical Properties of Water-Assembled Graphene Oxide Langmuir Monolayers: Guiding Controlled Transfer

Langmuir

Zavadil, Kevin R.; Harrison, Katharine L.; Biedermann, Laura B.

Liquid-phase transfer of graphene oxide (GO) and reduced graphene oxide (RGO) monolayers is investigated from the perspective of the mechanical properties of these films. Monolayers are assembled in a Langmuir-Blodgett trough, and oscillatory barrier measurements are used to characterize the resulting compressive and shear moduli as a function of surface pressure. GO monolayers are shown to develop a significant shear modulus (10-25 mN/m) at relevant surface pressures while RGO monolayers do not. The existence of a shear modulus indicates that GO is acting as a two-dimensional solid driven by strong interaction between the individual GO sheets. The absence of such behavior in RGO is attributed to the decrease in oxygen moieties on the sheet basal plane, permitting RGO sheets to slide across one another with minimum energy dissipation. Knowledge of this two-dimensional solid behavior is exploited to successfully transfer large-area, continuous GO films to hydrophobic Au substrates. The key to successful transfer is the use of shallow-angle dipping designed to minimize tensile stress present during the insertion or extraction of the substrate. A shallow dip angle on hydrophobic Au does not impart a beneficial effect for RGO monolayers, as these monolayers do not behave as two-dimensional solids and do not remain coherent during the transfer process. We hypothesize that this observed correlation between monolayer mechanical properties and continuous film transfer success is more universally applicable across substrate hydrophobicities and could be exploited to control the transfer of films composed of two-dimensional materials.

More Details

Evaluating Moving Target Defense with PLADD

Jones, Stephen T.; Outkin, Alexander V.; Gearhart, Jared L.; Hobbs, Jacob; Siirola, John D.; Phillips, Cynthia A.; Verzi, Stephen J.; Tauritz, Daniel; Mulder, Samuel A.; Naugle, Asmeret B.

This project evaluates the effectiveness of moving target defense (MTD) techniques using a new game we have designed, called PLADD, inspired by the game FlipIt [28]. PLADD extends FlipIt by incorporating what we believe are key MTD concepts. We have analyzed PLADD and proven the existence of a defender strategy that pushes a rational attacker out of the game, demonstrated how limited the strategies available to an attacker are in PLADD, and derived analytic expressions for the expected utility of the game’s players in multiple game variants. We have created an algorithm for finding a defender’s optimal PLADD strategy. We show that in the special case of achieving deterrence in PLADD, MTD is not always cost effective and that its optimal deployment may shift abruptly from not using MTD at all to using it as aggressively as possible. We believe our effort provides basic, fundamental insights into the use of MTD, but conclude that a truly practical analysis requires model selection and calibration based on real scenarios and empirical data. We propose several avenues for further inquiry, including (1) agents with adaptive capabilities more reflective of real world adversaries, (2) the presence of multiple, heterogeneous adversaries, (3) computational game theory-based approaches such as coevolution to allow scaling to the real world beyond the limitations of analytical analysis and classical game theory, (4) mapping the game to real-world scenarios, (5) taking player risk into account when designing a strategy (in addition to expected payoff), (6) improving our understanding of the dynamic nature of MTD-inspired games by using a martingale representation, defensive forecasting, and techniques from signal processing, and (7) using adversarial games to develop inherently resilient cyber systems.

More Details

Integrated Energy-Water Planning in the Western and Texas Interconnections

Tidwell, Vincent C.; Moreland, Barbara D.

While long-term regional electricity transmission planning has traditionally focused on cost, infrastructure utilization, environmental impact, and reliability, the availability of water is an emerging issue. Toward this growing need, thermoelectric expansion should consider competing demands from other water use sectors balanced with fresh and non-traditional water supplies subject to climate variability. To address this need the Department of Energy's Office of Electricity Delivery and Energy Reliability supported an integrated planning project with funding through the American Reinvestment and Recovery Act (2009). Specifically, an integrated energy-water analysis was performed to support transmission system planners in the Western and Texas Interconnections to explore the potential implications of water availability and cost for long-term transmission planning. The project brought together electric transmission planners (e.g., Western Electricity Coordinating Council (WECC) and the Electric Reliability Council of Texas (ERCOT)) with western water planners (e.g., Western Governors' Association and the Western States Water Council). Efforts were organized into ten specific tasks: (1) project coordination and outreach; (2) thermoelectric water use; (3) non-thermoelectric water use; (4) water availability; (5) water cost; (6) environmental risk; (7) climate variability; (8) energy for water; (9) decision support system interface; and, (10) transmission planning support. Major accomplishments associated with this effort include: For the first time water availability was used to inform generation expansion planning by WECC and ERCOT. For the first time, projections of intensifying drought and its effect on reservoir levels, and thermal effluent discharge permitting were used to inform operational and expansion planning by ERCOT. Water withdrawal and consumption were characterized for each power plant in the WECC and ERCOT service areas/regions. Water use factors were also developed for a range of unit processes that allowed projection of future water demands related to electric generation expansion planning. Working with state water managers current and future water use (withdrawal and consumption) were projected throughout the Western United States at an 8-digit Hydraulic Unit Code (HUC-8) level (over 1200 watersheds). In a similar fashion water availability and cost were mapped across the Western United States. Considered were five different sources of water: unappropriated surface water, unappropriated groundwater, appropriated water, municipal wastewater and brackish groundwater. Water basins (at the HUC-8 level) were mapped across the Western United States with regard to their potential for conflicts between aquatic and riparian species and habitats listed under the Endangered Species Act and water availability for future energy development. Water planners were engaged through the Western States Water Council and thus reflects their membership of the 17 contiguous western states (i.e., Texas up through the Dakotas and West). Power plants at greatest risk to the impacts of drought were identified. The analysis considered the hazards of low flows, insufficient reservoir storage, and elevated water temperatures under intensifying drought conditions projected for the future. The electricity used to provide water-related services was mapped at a county level throughout the Western U.S. Considered was the electricity required for interbasin conveyance, agricultural pumping, drinking water and wastewater services. To communicate our results the project has produced 6 journal articles, 1 book chapter, 11 reports, and 47 presentations at related conferences.

More Details

Predicting the Occurrence of Mixed Mode Failure Associated With Hydraulic Fracturing, Part 2 Water Saturated Tests

Bauer, Stephen J.; Broome, Scott T.; Choens, Charles; Barrow, Perry C.

Seven water-saturated triaxial extension experiments were conducted on four sedimentary rocks. This experimental condition was hypothesized more representative of that existing for downhole hydrofracture and thus it may improve our understanding of the phenomena. In all tests the pore pressure was 10 MPa and confirming pressure was adjusted to achieve tensile and transitional failure mode conditions. Using previous work in this LDRD for comparison, the law of effective stress is demonstrated in extension using this sample geometry. In three of the four lithologies, no apparent chemo-mechanical effect of water is apparent, and in the fourth lithology test results indicate some chemo-mechanical effect of water.

More Details

On the mechanical stability of uranyl peroxide hydrates: implications for nuclear fuel degradation

RSC Advances

Weck, Philippe F.; Kim, Eunja; Buck, Edgar C.

The mechanical properties and stability of studtite, (UO2)(O2)(H2O)2·2H2O, and metastudtite, (UO2)(O2)(H2O)2, two important corrosion phases observed on spent nuclear fuel exposed to water, have been investigated using density functional perturbation theory. While (UO2)(O2)(H2O)2 satisfies the necessary and sufficient Born criteria for mechanical stability, (UO2)(O2)(H2O)2·2H2O is found to be mechanically metastable, which might be the underlying cause of the irreversibility of the studtite to metastudtite transformation. According to Pugh's and Poisson's ratios and the Cauchy pressure, both phases are considered ductile and shear modulus is the parameter limiting their mechanical stability. Debye temperatures of 294 and 271 K are predicted for polycrystalline (UO2)(O2)(H2O)2·2H2O and (UO2)(O2)(H2O)2, suggesting a lower micro-hardness of metastudtite.

More Details

Determination of recombination radius in Si for binary collision approximation codes

Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms

Vizkelethy, Gyorgy; Foiles, Stephen M.

Displacement damage caused by ions or neutrons in microelectronic devices can have significant effect on the performance of these devices. Therefore, it is important to predict not only the displacement damage profile, but also its magnitude precisely. Analytical methods and binary collision approximation codes working with amorphous targets use the concept of displacement energy, the energy that a lattice atom has to receive to create a permanent replacement. It was found that this “displacement energy” is direction dependent; it can range from 12 to 32 eV in silicon. Obviously, this model fails in BCA codes that work with crystalline targets, such as Marlowe. Marlowe does not use displacement energy; instead, it uses lattice binding energy only and then pairs the interstitial atoms with vacancies. Then based on the configuration of the Frenkel pairs it classifies them as close, near, or distant pairs, and considers the distant pairs the permanent replacements. Unfortunately, this separation is an ad hoc assumption, and the results do not agree with molecular dynamics calculations. After irradiation, there is a prompt recombination of interstitials and vacancies if they are nearby, within a recombination radius. In order to implement this recombination radius in Marlowe, we used the comparison of MD and Marlowe calculation in a range of ion energies in single crystal silicon target. As a result, the calculations showed that a single recombination radius of ~7.4 Å in Marlowe for a range of ion energies gives an excellent agreement with MD.

More Details

Swelling Properties of Montmorillonite and Beidellite Clay Minerals from Molecular Simulation: Comparison of Temperature, Interlayer Cation, and Charge Location Effects

Journal of Physical Chemistry C

Teich-Mcgoldrick, Stephanie; Greathouse, Jeffery A.; Jove-Colon, Carlos F.; Cygan, Randall T.

The swelling properties of smectite clay minerals are relevant to many engineering applications including environmental remediation, repository design for nuclear waste disposal, borehole stability in drilling operations, and additives for numerous industrial processes and commercial products. We used molecular dynamics and grand canonical Monte Carlo simulations to study the effects of layer charge location, interlayer cation, and temperature on intracrystalline swelling of montmorillonite and beidellite clay minerals. For a beidellite model with layer charge exclusively in the tetrahedral sheet, strong ion-surface interactions shift the onset of the two-layer hydrate to higher water contents. In contrast, for a montmorillonite model with layer charge exclusively in the octahedral sheet, weaker ion-surface interactions result in the formation of fully hydrated ions (two-layer hydrate) at much lower water contents. Clay hydration enthalpies and interlayer atomic density profiles are consistent with the swelling results. Water adsorption isotherms from grand canonical Monte Carlo simulations are used to relate interlayer hydration states to relative humidity, in good agreement with experimental findings.

More Details

Pulsed power accelerator for material physics experiments

Physical Review Special Topics - Accelerators and Beams

Reisman, David; Stoltzfus, Brian; Stygar, William A.; Austin, Kevin N.; Waisman, Eduardo M.; Hickman, Randy J.; Davis, Jean-Paul; Haill, Thomas A.; Knudson, Marcus D.; Seagle, Christopher T.; Brown, Justin L.

We have developed the design of Thor: a pulsed power accelerator that delivers a precisely shaped current pulse with a peak value as high as 7 MA to a strip-line load. The peak magnetic pressure achieved within a 1-cm-wide load is as high as 100 GPa. Thor is powered by as many as 288 decoupled and transit-time isolated bricks. Each brick consists of a single switch and two capacitors connected electrically in series. The bricks can be individually triggered to achieve a high degree of current pulse tailoring. Because the accelerator is impedance matched throughout, capacitor energy is delivered to the strip-line load with an efficiency as high as 50%. We used an iterative finite element method (FEM), circuit, and magnetohydrodynamic simulations to develop an optimized accelerator design. When powered by 96 bricks, Thor delivers as much as 4.1 MA to a load, and achieves peak magnetic pressures as high as 65 GPa. When powered by 288 bricks, Thor delivers as much as 6.9 MA to a load, and achieves magnetic pressures as high as 170 GPa. We have developed an algebraic calculational procedure that uses the single brick basis function to determine the brick-triggering sequence necessary to generate a highly tailored current pulse time history for shockless loading of samples. Thor will drive a wide variety of magnetically driven shockless ramp compression, shockless flyer plate, shock-ramp, equation of state, material strength, phase transition, and other advanced material physics experiments.

More Details

III-Nitride nanowires for UV-visible optoelectronics

2015 IEEE Summer Topicals Meeting Series, SUM 2015

Wang, George T.

Compared to planar films, III-nitride nanowires have several potential advantages for device applications. Using a top-down approach, high quality III-nitride-based nanowires with controllable height, pitch and diameter have been realized. The fabrication, structural characterization, and luminescence of both axial and radial type III-nitride nanowire LEDs will be presented, along with a discussion of their relative merits and weaknesses. The lasing characteristics of GaN-based and GaN/InGaN based nanowires fabricated by this approach will also be presented, along with schemes for single optical mode selection, polarization control, beam shaping, and wavelength tuning. Preliminary results on the top-down fabrication and characterization of AlGaN nanowires will also be presented.

More Details

350-nm band edge-emitting laser diodes enabled by low-dislocation-density AlGaN templates

2015 IEEE Summer Topicals Meeting Series, SUM 2015

Crawford, Mary H.; Allerman, A.A.; Armstrong, Andrew A.; Wierer, Jonathan J.; Chow, Weng W.; Moseley, Michael W.; Smith, Michael L.; Cross, Karen C.

Realization of efficient laser diodes with ultra-violet (UV) emission from ∼260-360 nm would enable many applications including fluorescence-based biological agent detection, sterilization, and portable water purification. While InGaN-based laser diodes are well developed down to ∼370 nm, achieving shorter UV wavelengths requires higher Al-content AlGaN alloys with increasing challenges in achieving p-type doping, strain-management, and low threading-dislocation-density (TDD) AlGaN templates. Given these challenges, few groups have reported AlGaN-based edge-emitting laser diodes (LDs) with emission < 355 nm.[1, 2] Most recently, random lasing via Anderson localization in AlGaN nanowire structures has demonstrated a novel approach to realizing deep-UV laser diodes.[3]

More Details

Time-resolved infrared reflectance studies of the dehydration-induced transformation of uranyl nitrate hexahydrate to the trihydrate form

Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory

Johnson, Timothy J.; Sweet, Lucas E.; Meier, David E.; J, Mausolf E.; Kim, Eunja; Weck, Philippe F.; Buck, Edgar C.; K, McNamara B.

Uranyl nitrate is a key species in the nuclear fuel cycle. However, this species is known to exist in different states of hydration, including the hexahydrate ([UO2(NO3)2(H2O)6] often called UNH), the trihydrate [UO2(NO3)2(H2O)3 or UNT], and in very dry environments the dihydrate form [UO2(NO3)2(H2O)2]. Their relative stabilities depend on both water vapor pressure and temperature. In the 1950s and 1960s, the different phases were studied by infrared transmission spectroscopy but were limited both by instrumental resolution and by the ability to prepare the samples for transmission. We have revisited this problem using time-resolved reflectance spectroscopy, which requires no sample preparation and allows dynamic analysis while the sample is exposed to a flow of N2 gas. Samples of known hydration state were prepared and confirmed via X-ray diffraction patterns of known species. In reflectance mode the hexahydrate UO2(NO3)2(H2O)6 has a distinct uranyl asymmetric stretch band at 949.0 cm–1 that shifts to shorter wavelengths and broadens as the sample desiccates and recrystallizes to the trihydrate, first as a shoulder growing in on the blue edge but ultimately results in a doublet band with reflectance peaks at 966 and 957 cm–1. The data are consistent with transformation from UNH to UNT as UNT has two inequivalent UO22+ sites. The dehydration of UO2(NO3)2(H2O)6 to UO2(NO3)2(H2O)3 is both a structural and morphological change that has the lustrous lime green UO2(NO3)2(H2O)6 crystals changing to the matte greenish yellow of the trihydrate solid. As a result, the phase transformation and crystal structures were confirmed by density functional theory calculations and optical microscopy methods, both of which showed a transformation with two distinct sites for the uranyl cation in the trihydrate, with only one in the hexahydrate.

More Details

Three-dimensional fully-coupled electrical and thermal transport model of dynamic switching in oxide memristors

ECS Transactions (Online)

Gao, Xujiao; Mamaluy, Denis; Mickel, Patrick R.; Marinella, Matthew

In this paper, we present a fully-coupled electrical and thermal transport model for oxide memristors that solves simultaneously the time-dependent continuity equations for all relevant carriers, together with the time-dependent heat equation including Joule heating sources. The model captures all the important processes that drive memristive switching and is applicable to simulate switching behavior in a wide range of oxide memristors. The model is applied to simulate the ON switching in a 3D filamentary TaOx memristor. Simulation results show that, for uniform vacancy density in the OFF state, vacancies fill in the conduction filament till saturation, and then fill out a gap formed in the Ta electrode during ON switching; furthermore, ON-switching time strongly depends on applied voltage and the ON-to-OFF current ratio is sensitive to the filament vacancy density in the OFF state.

More Details

Enhanced Nanoparticle Size Control by Extending LaMer's Mechanism

Chemistry of Materials

Vreeland, Erika C.; Watt, John D.; Schober, Gretchen B.; Hance, Bradley G.; Austin, Mariah; Price, Andrew D.; Fellows, Benjamin D.; Monson, Todd; Hudak, Nicholas S.; Maldonado-Camargo, Lorena; Bohorquez, Ana C.; Rinaldi, Carlos; Huber, Dale L.

The synthesis of well-defined nanoparticle materials has been an area of intense investigation, but size control in nanoparticle syntheses is largely empirical. Here, we introduce a general method for fine size control in the synthesis of nanoparticles by establishing steady state growth conditions through the continuous, controlled addition of precursor, leading to a uniform rate of particle growth. This approach, which we term the "xtended LaMer mechanism" allows for reproducibility in particle size from batch to batch as well as the ability to predict nanoparticle size by monitoring the early stages of growth. We have demonstrated this method by applying it to a challenging synthetic system: magnetite nanoparticles. To facilitate this reaction, we have developed a reproducible method for synthesizing an iron oleate precursor that can be used without purification. We then show how such fine size control affects the performance of magnetite nanoparticles in magnetic hyperthermia.

More Details

Unexpected formal insertion of CO2 into the C-Si bonds of a zinc compound

ChemComm

Kemp, Richard; Mcgrew, Genette I.; Khatri, Pathik A.; Geiger, William E.; Waterman, Rory

Reaction of [κ2-PR2C(SiMe3)Py]2Zn (R = Ph, 2a; iPr, 2b) with CO2 affords the products of formal insertion at the C–Si bond, [κ2-PR2CC(O)O(SiMe3)Py]2Zn (R = Ph, 3a; iPr, 3b). Insertion product 3b was structurally characterized. As a result, the reaction appears to be a stepwise insertion and rearrangement of CO2 based on kinetic data.

More Details

Metabolism-Induced CaCO 3 Biomineralization During Reactive Transport in a Micromodel: Implications for Porosity Alteration

Environmental Science and Technology

Singh, Rajveer; Yoon, Hongkyu; Sanford, Robert A.; Katz, Lynn; Fouke, Bruce W.; Werth, Charles J.

We investigated the ability of Pseudomonas stutzeri strain DCP-Ps1 to drive CaCO3 biomineralization in a microfluidic flowcell (i.e., micromodel) that simulates subsurface porous media. Results indicate that CaCO3 precipitation occurs during NO3 reduction with a maximum saturation index (SIcalcite) of ~1.56, but not when NO3 was removed, inactive biomass remained, and pH and alkalinity were adjusted to SIcalcite ~ 1.56. CaCO3 precipitation was promoted by metabolically active cultures of strain DCP-Ps1, which at similar values of SIcalcite, have a more negative surface charge than inactive strain DCP-Ps1. A two-stage NO3 reduction (NO3 → NO2 → N2) pore-scale reactive transport model was used to evaluate denitrification kinetics, which was observed in the micromodel as upper (NO3 reduction) and lower (NO2 reduction) horizontal zones of biomass growth with CaCO3 precipitation exclusively in the lower zone. Our model results are consistent with two biomass growth regions and indicate that precipitation occurred in the lower zone because the largest increase in pH and alkalinity is associated with NO2 reduction. CaCO3 precipitates typically occupied the entire vertical depth of pores and impacted porosity, permeability, and flow. This study provides a framework for incorporating microbial activity in biogeochemistry models, which often base biomineralization only on SI (caused by biotic or abiotic reactions) and, thereby, underpredict the extent of this complex process. Furthermore, these results have wide-ranging implications for understanding reactive transport in relevance to groundwater remediation, CO2 sequestration, and enhanced oil recovery.

More Details

Continuous joint measurement and entanglement of qubits in remote cavities

Physical Review A - Atomic, Molecular, and Optical Physics

Motzoi, Felix; Sarovar, Mohan; Whaley, K.B.

We present a first-principles theoretical analysis of the entanglement of two superconducting qubits in spatially separated microwave cavities by a sequential (cascaded) probe of the two cavities with a coherent mode, that provides a full characterization of both the continuous measurement induced dynamics and the entanglement generation. We use the SLH formalism to derive the full quantum master equation for the coupled qubits and cavities system, within the rotating wave and dispersive approximations, and conditioned equations for the cavity fields. We then develop effective stochastic master equations for the dynamics of the qubit system in both a polaronic reference frame and a reduced representation within the laboratory frame. We compare simulations with and analyze tradeoffs between these two representations, including the onset of a non-Markovian regime for simulations in the reduced representation. We provide conditions for ensuring persistence of entanglement and show that using shaped pulses enables these conditions to be met at all times under general experimental conditions. The resulting entanglement is shown to be robust with respect to measurement imperfections and loss channels. We also study the effects of qubit driving and relaxation dynamics during a weak measurement, as a prelude to modeling measurement-based feedback control in this cascaded system.

More Details

Transport through an impurity tunnel coupled to a Si/SiGe quantum dot

Applied Physics Letters

Foote, Ryan H.; Ward, Daniel R.; Prance, J.R.; Foulk, James W.; Nielsen, Erik N.; Thorgrimsson, Brandur; Savage, D.E.; Friesen, Mark; Coppersmith, S.N.; Eriksson, M.A.

Achieving controllable coupling of dopants in silicon is crucial for operating donor-based qubit devices, but it is difficult because of the small size of donor-bound electron wavefunctions. Here, we report the characterization of a quantum dot coupled to a localized electronic state and present evidence of controllable coupling between the quantum dot and the localized state. A set of measurements of transport through the device enable the determination that the most likely location of the localized state is consistent with a location in the quantum well near the edge of the quantum dot. Our results are consistent with a gate-voltage controllable tunnel coupling, which is an important building block for hybrid donor and gate-defined quantum dot devices.

More Details

Spectroscopic investigations of band offsets of MgO|AlxGa1-xN epitaxial heterostructures with varying AlN content

Applied Physics Letters

Paisley, Elizabeth; Brumbach, Michael T.; Allerman, A.A.; Atcitty, Stanley; Baca, Albert G.; Armstrong, Andrew A.; Kaplar, Robert; Ihlefeld, Jon F.

Epitaxial (111) MgO films were prepared on (0001) AlxGa1-xN via molecular-beam epitaxy for x=0 to x=0.67. Valence band offsets of MgO to AlxGa1-xN were measured using X-ray photoelectron spectroscopy as 1.65±0.07eV, 1.36±0.05eV, and 1.05±0.09eV for x=0, 0.28, and 0.67, respectively. This yielded conduction band offsets of 2.75eV, 2.39eV, and 1.63eV for x=0, 0.28, and 0.67, respectively. All band offsets measured between MgO and AlxGa1-xN provide a>1eV barrier height to the semiconductor.

More Details

Experimental determination of lead carbonate solubility at high ionic strengths: a Pitzer model description

Monatshefte fur Chemie

Xiong, Yongliang

Abstract In this study, solubility measurements of lead carbonate, PbCO3(cr), cerussite, as a function of total ionic strengths are conducted in the mixtures of NaCl and NaHCO3 up to I = 1.2 mol kg-1 and in the mixtures of NaHCO3 and Na2CO3 up to I = 5.2 mol kg-1, at room temperature (22.5 ± 0.5 °C). The solubility constant (log Kos) for cerussite was determined as -13.76 ± 0.15 (2σ) with a set of Pitzer parameters describing the specific interactions of PbCO3(aq), Pb(CO3)2-2, and Pb(CO3)Cl- with the bulk-supporting electrolytes, based on the Pitzer model. The model developed in this work can reproduce the experimental results including model-independent solubility values from the literature over a wide range of ionic strengths with satisfactory accuracy. The model is expected to find applications in numerous fields, including the accurate description of chemical behavior of lead in geological repositories, the modeling of formation of oxidized Pb-Zn ore deposits, and the environmental remediation of lead contamination.

More Details

Practical colloidal processing of multication ceramics

Journal of Ceramic Science and Technology

Bell, Nelson S.; Monson, Todd; Diantonio, Christopher; Wu, Yiquan

The use of colloidal processing principles in the formation of ceramic materials is well appreciated for developing homogeneous material properties in sintered products, enabling novel forming techniques for porous ceramics or 3D printing, and controlling microstructure to enable optimized material properties. The solution processing of electronic ceramic materials often involves multiple cationic elements or dopants to affect microstructure and properties. Material stability must be considered through the steps of colloidal processing to optimize desired component properties. This review provides strategies for preventing material degradation in particle synthesis, milling processes, and dispersion, with case studies of consolidation using spark plasma sintering of these systems. The prevention of multication corrosion in colloidal dispersions can be achieved by utilizing conditions similar to the synthesis environment or by the development of surface passivation layers. The choice of dispersing surfactants can be related to these surface states, which are of special importance for nanoparticle systems. A survey of dispersant chemistries related to some common synthesis conditions is provided for perovskite systems as an example. Furthermore, these principles can be applied to many colloidal systems related to electronic and optical applications.

More Details

TILDA-V: A full-differential code for proton tracking in biological matter

Journal of Physics: Conference Series

Quinto, M.A.; Monti, J.M.; Weck, Philippe F.; Fojon, O.A.; Hanssen, J.; Rivarola, R.D.; Senot, P.; Champion, C.

Monte Carlo track structure codes are commonly used for predicting the radio-induced biological damages at the cellular scale. However most of them are based on semi-empirical cross sections as well as the use of water as surrogate of the biological matter. The aim of this work is to present our home-made Monte Carlo code, called TILDA-V, based on a quantum-mechanical cross section data base able to model all the proton- and secondary electron-induced collisions in both water and DNA.

More Details

Evaluation of Used Fuel Disposition in Clay-Bearing Rock

Jove-Colon, Carlos F.; Weck, Philippe F.; Hammond, Glenn E.; Kuhlman, Kristopher L.; Zheng, Liange; Rutqvist, Jonny; Kim, Kunhwi; Houseworth, James; Caporuscio, Florie A.; Cheshire, Michael; Palaich, Sarah; Norskog, Katherine E.; Zavarin, Mavrik; Wolery, Thomas J.; Jerden, James L.; Copple, Jacqueline M.; Cruse, Terry; Ebert, William L.

Deep geological disposal of nuclear waste in clay/shale/argillaceous rock formations has received much consideration given its desirable attributes such as isolation properties (low permeability), geochemically reduced conditions, slow diffusion, sorbtive mineralogy, and geologically widespread (Jové Colón et al., 2014). There is a wealth of gained scientific expertise on the behavior of clay/shale/ argillaceous rock given its focus in international nuclear waste repository programs that includes underground research laboratories (URLs) in Switzerland, France, Belgium, and Japan. Jové Colón et al. (2014) have described some of these investigative efforts in clay rock ranging from site characterization to research on the engineered barrier system (EBS). Evaluations of disposal options that include nuclear waste disposition in clay/shale/argillaceous rock have determined that this host media can accommodate a wide range of waste types. R&D work within the Used Fuel Disposition Campaign (UFDC) assessing thermal effects and fluid-mineral interactions for the disposition of heat-generating waste have so far demonstrated the feasibility for the EBS and clay host rock to withstand high thermal loads. This report represents the continuation of disposal R&D efforts on the advancement and refinement of coupled Thermal-Hydrological-Mechanical-Chemical (THMC), hydrothermal experiments on clay interactions, used fuel degradation (source term), and thermodynamic modeling and database development. The development and implementation of a clay/shale/argillite reference case described in Jové Colón et al. (2014) for FY15 will be documented in another report (Mariner et al. 2015) – only a brief description will be given here. This clay reference case implementation is the result of integration efforts between the GDSA PA and disposal in argillite work packages. The assessment of sacrificial zones in the EBS is being addressed through experimental work along with 1D reactive-transport and reaction path modeling. The focus of these investigations into the nature of sacrificial zones is to evaluate the chemical effects of heterogeneous chemical reactions at EBS interfaces. The difference in barrier material types and the extent of chemical reactions within these interfacial domains generates changes in mineral abundances. These mineralogical alterations also result in volume changes that, although small, could affect the interface bulk porosity. As in previous deliverables, this report is structured according to various national laboratory contributions describing R&D activities applicable to clay/shale/argillite media.

More Details
Results 45801–46000 of 99,299
Results 45801–46000 of 99,299