Publications

9 Results

Search results

Jump to search filters

Training neural hardware with noisy components

Proceedings of the International Joint Conference on Neural Networks

Rothganger, Fredrick R.; Evans, Brian R.; Aimone, James B.; DeBenedictis, Erik

Some next generation computing devices may consist of resistive memory arranged as a crossbar. Currently, the dominant approach is to use crossbars as the weight matrix of a neural network, and to use learning algorithms that require small incremental weight updates, such as gradient descent (for example Backpropagation). Using real-world measurements, we demonstrate that resistive memory devices are unlikely to support such learning methods. As an alternative, we offer a random search algorithm tailored to the measured characteristics of our devices.

More Details

Development, characterization, and modeling of a TaOx ReRAM for a neuromorphic accelerator

ECS Transactions

Marinella, Matthew J.; Mickel, Patrick R.; Lohn, Andrew L.; Hughart, David R.; Bondi, Robert J.; Mamaluy, Denis M.; Hjalmarson, Harold P.; Stevens, James E.; Decker, Seth D.; Apodaca, Roger A.; Evans, Brian R.; Aimone, James B.; Rothganger, Fredrick R.; James, Conrad D.; DeBenedictis, Erik

Resistive random access memory (ReRAM), or memristors, may be capable of significantly improve the efficiency of neuromorphic computing, when used as a central component of an analog hardware accelerator. However, the significant electrical variation within a device and between devices degrades the maximum efficiency and accuracy which can be achieved by a ReRAMbased neuromorphic accelerator. In this report, the electrical variability is characterized, with a particular focus on that which is due to fundamental, intrinsic factors. Analytical and ab initio models are presented which offer some insight into the factors responsible for this variability.

More Details

Development, characterization, and modeling of a TaOx ReRAM for a neuromorphic accelerator

ECS Transactions

Marinella, Matthew J.; Mickel, Patrick R.; Lohn, Andrew L.; Hughart, David R.; Bondi, Robert J.; Mamaluy, Denis M.; Hjalmarson, Harold P.; Stevens, James E.; Decker, Seth D.; Apodaca, Roger A.; Evans, Brian R.; Aimone, James B.; Rothganger, Fredrick R.; James, Conrad D.; DeBenedictis, Erik

Resistive random access memory (ReRAM), or memristors, may be capable of significantly improve the efficiency of neuromorphic computing, when used as a central component of an analog hardware accelerator. However, the significant electrical variation within a device and between devices degrades the maximum efficiency and accuracy which can be achieved by a ReRAMbased neuromorphic accelerator. In this report, the electrical variability is characterized, with a particular focus on that which is due to fundamental, intrinsic factors. Analytical and ab initio models are presented which offer some insight into the factors responsible for this variability.

More Details

Effect of DC voltage pulses on memristor behavior

Evans, Brian R.

Current knowledge of memristor behavior is limited to a few physical models of which little comprehensive data collection has taken place. The purpose of this research is to collect data in search of exploitable memristor behavior by designing and implementing tests on a HP Labs Rev2 Memristor Test Board. The results are then graphed in their optimal format for conceptualizing behavioral patterns. This series of experiments has concluded the existence of an additional memristor state affecting the behavior of memristors when pulsed with positively polarized DC voltages. This effect has been observed across multiple memristors and data sets. The following pages outline the process that led to the hypothetical existence and eventual proof of this additional state of memristor behavior.

More Details
9 Results
9 Results