Publications

Results 901–1000 of 96,771

Search results

Jump to search filters

Evolution of titanium particle combustion in potassium perchlorate and air

Combustion and Flame

Marsh, Andrew W.; Zheng, Andy X.; Wang, Gwendolyn T.; Hobbs, Michael L.; Kearney, S.P.; Mazumdar, Yi C.

Understanding titanium particle combustion processes is critical not only for characterizing existing pyrotechnic systems but also for creating new igniter designs. In order to characterize titanium particle combustion processes, morphologies, and temperatures, simultaneous spatially-resolved electric field holography and imaging pyrometry techniques were used to capture post-ignition data at up to 7 kHz. Due to the phase and thermal distortions present in the combustion cloud, traditional digital in-line holography techniques fail to capture accurate data. In this work, electric field holography techniques are used in order to cancel distortions and capture the three-dimensional spatial locations and diameters of the particles. In order to estimate the projected surface temperatures of the titanium particles, an imaging pyrometry method that ratios emission at 750 and 850 nm is utilized. Using these diagnostics, joint statistics are collected for particle size, morphology, velocity, and temperature. Results show that, early in the combustion process, the titanium particles are primarily oxidized by potassium perchlorate inside the igniter cup, resulting in projected surface temperatures near 3000 K. Later in the process, the particles interact with ambient air, resulting in lower surface temperatures around 2400 K and the formation of flame zones. These results are consistent with adiabatic flame temperature predictions as well as particle morphology observations of a titanium core with a TiO2 surface. Late stage particle expansion, star fragmentation, and molten droplet breakup events are also observed using the time-resolved morphology and temperature diagnostics. These results illustrate the different stages of titanium particle combustion in pyrotechnic environments, which can be used to inform improvements in next-generation igniters.

More Details

Verification and benchmarking relativistic electron beam transport through a background gas

Computer Physics Communications

Medina, Brandon M.; Grua, Pierre; Cartwright, Keith C.; Hebert, David; Szalek, Nicolas; Caizergues, Clement; Owens, Israel O.; Rhoades, Elaine L.; Gardelle, Jacques; Moore, Christopher H.

It is necessary to establish confidence in high-consequence codes containing an extensive suite of physics algorithms in the regimes of interest. Verification problems allow code developers to assess numerical accuracy and increase confidence that specific sets of model physics were implemented correctly in the code. The two main verification techniques are code verification and solution verification. In this work, we present verification problems that can be used in other codes to increase confidence in simulations of relativistic beam transport. Specifically, we use the general plasma code EMPIRE to model and compare with the analytical solution to the evolution of the outer radial envelope of a relativistic charged particle beam. We also outline a benchmark test of a relativistic beam propagating through a vacuum and pressurized gas cell, and present the results between EMPIRE and the hybrid code GAZEL. Further, we discuss the subtle errors that were caught with these problems and detail lessons learned.

More Details

Randomized adaptive quantum state preparation

Physical Review Research

Magann, Alicia B.; Economou, Sophia E.; Arenz, Christian

We develop an adaptive method for quantum state preparation that utilizes randomness as an essential component and that does not require classical optimization. Instead, a cost function is minimized to prepare a desired quantum state through an adaptively constructed quantum circuit, where each adaptive step is informed by feedback from gradient measurements in which the associated tangent space directions are randomized. We provide theoretical arguments and numerical evidence that convergence to the target state can be achieved for almost all initial states. We investigate different randomization procedures and develop lower bounds on the expected cost function change, which allows for drawing connections to barren plateaus and for assessing the applicability of the algorithm to large-scale problems.

More Details

Parallel simulation via SPPARKS of on-lattice kinetic and Metropolis Monte Carlo models for materials processing

Modelling and Simulation in Materials Science and Engineering

Mitchell, John A.; Abdeljawad, Fadi; Battaile, Corbett C.; Garcia-Cardona, Cristina; Holm, Elizabeth A.; Homer, Eric R.; Madison, Jonathan D.; Rodgers, Theron R.; Thompson, Aidan P.; Tikare, Veena; Webb, Ed; Plimpton, Steven J.

SPPARKS is an open-source parallel simulation code for developing and running various kinds of on-lattice Monte Carlo models at the atomic or meso scales. It can be used to study the properties of solid-state materials as well as model their dynamic evolution during processing. The modular nature of the code allows new models and diagnostic computations to be added without modification to its core functionality, including its parallel algorithms. A variety of models for microstructural evolution (grain growth), solid-state diffusion, thin film deposition, and additive manufacturing (AM) processes are included in the code. SPPARKS can also be used to implement grid-based algorithms such as phase field or cellular automata models, to run either in tandem with a Monte Carlo method or independently. For very large systems such as AM applications, the Stitch I/O library is included, which enables only a small portion of a huge system to be resident in memory. In this paper we describe SPPARKS and its parallel algorithms and performance, explain how new Monte Carlo models can be added, and highlight a variety of applications which have been developed within the code.

More Details

Grayscale Digital Light Processing Gradient Printing for Stress Concentration Reduction and Material Toughness Enhancement

Journal of Applied Mechanics, Transactions ASME

Forte, Connor T.; Montgomery, S.M.; Yue, Liang; Hamel, Craig H.; Qi, H.J.

Avoiding stress concentrations is essential to achieve robust parts since failure tends to originate at such concentrations. With recent advances in multimaterial additive manufacturing, it is possible to alter the stress (or strain) distribution by adjusting the material properties in selected locations. Here, we investigate the use of grayscale digital light processing (g-DLP) 3D printing to create modulus gradients around areas of high stress. These gradients prevent failure by redistributing high stresses (or strains) to the neighboring material. The improved material distributions are calculated using finite element analysis. The much-enhanced properties are demonstrated experimentally for thin plates with circular, triangular, and elliptical holes. This work suggests that multimaterial additive manufacturing techniques like g-DLP printing provide a unique opportunity to create tougher engineering materials and parts.

More Details

Pulse shape measurements for neutron/gamma discrimination using the TOFPET2 ASIC

Journal of Instrumentation

Sweany, Melinda; Weinfurther, Kyle J.; Marleau, Peter M.

Many highly pixelated organic scintillator detection systems would benefit from independent readout of each scintillator pixel. Recent advances in Silicon Photomultiplier (SiPM) technology makes this goal feasible, however the data acquisition from potentially hundreds or thousands of channels requires a low-cost and compact solution. For pixelated neutron detection with organic scintillators, the capability to distinguish between neutron and gamma interactions using Pulse Shape Discrimination (PSD) is required along with pulse charge and time of arrival. The TOFPET2 ASIC from PETsys Electronics is a 64-channel readout chip providing pulse time and charge integration measurements from SiPMs, and is specifically designed for time-of-flight positron-emission tomography. Using an 8 × 8 array of 6 mm × 6 mm J-series SiPMs from SensL/OnSemi (ArrayJ-60035-64P-PCB), we have studied the energy and PSD performance of the TOFPET2 ASIC using a 4 × 4 array of 6 mm × 6 mm × 30 mm trans-Stilbene crystals from Inrad Optics and a custom SiPM routing board from PETsys Electronics. Using a time-over-threshold method, we measure a maximum PSD figure-of-merit of approximately 1.2 at 478 keV (the Compton edge of 662 keV) for a J-series SiPM operating at an over-voltage of 3V.

More Details

Melt Blending: A Tool to Simplify Plastic Scintillator Synthesis

IEEE Transactions on Nuclear Science

Myllenbeck, Nicholas M.; Garcia, Gail F.; Benin, Annabelle L.; Feng, Patrick L.; Witzke, Ryan; Tran, Huu T.

Plastic scintillators are widely used as radiation detection media in homeland security and nuclear physics applications. Their attributes include low cost, scalability to large detector volumes, and additive compounding to enable additional material and detection features, such as pulse shape discrimination (PSD), gamma-ray spectroscopy, aging resistance, and coincidence timing. However, traditional chemically cured plastic scintillators (CCS) require long reaction times, and hazardous wet chemical procedures performed by specially trained personnel, and can leave residual monomer, resulting in deleterious optical and material properties. Here, we synthesize melt blended scintillators (MBSs) in 2.5 days using easily accessible solid-state compounding of commercially-available poly(styrene) with 30-60 wt% fluorene-based compound 'P2' to create monolithic detectors with < 100 ppm residual monomer, in several form factors. The best scintillation performance was recorded for 60 wt% P2 in Styron 665, including gamma-ray light yield 139% of EJ- 200 commercial scintillator and PSD figure of merit (FOM) value of 2.65 at 478 keVee, approaching P2 organic glass scintillator (OGS). The capability of MBS to generate fog-resistant scintillators and poly(methyl methacrylate) (PMMA)-based scintillators for use in challenging environments is also demonstrated.

More Details
Results 901–1000 of 96,771
Results 901–1000 of 96,771