This study investigates high performance electrochromic windows used on a passive house and residential dwelling to IECC 2021 (i.e., IECC dwelling). In the lab, the electrochromic film switches transmitted solar heat gain coefficient (SHGC) from 0.09 to 0.7 and visible transmittance from 0.15 to 0.82 with power consumption of 1.23 W/m2 during switching times less than 3 minutes. We extrapolate these results to a window assembly. Building energy models of the houses were evaluated in Santa Fe, New Mexico. A Monte Carlo analysis for 2020, 2040, 2060, and 2080 was conducted for Shared Socioeconomic Pathways 2-4.5, 3-7.0, and 5-8.5. Cases with and without the electrochromic windows and with and without electricity were used to determine energy use intensity and hours beyond thermal safety thresholds. The passive house showed 1.3-3.1% mean energy savings and the IECC dwelling 4.4-5.1% with electrochromic efficiency benefits growing into the future for both cases. Even so, overall savings decrease into the future for the passive house, due to growth in cooling load being dominant, conversely overall energy savings increase into the future for the IECC dwelling due to heating loads being dominant. For thermal resilience, the passive house exhibited a mean percent decrease of 0.02-0.31% hours in the extreme caution (i.e., > 32.2 ∘C, ≤ 39.4 ∘C) range while the IECC dwelling exhibited 0.38-4.38%. The study therefore shows that electrochromic windows will have smaller benefits for the passive house in comparison to the IECC dwelling. The relationship between electrochromic windows is shown to have a complex relationship between house efficiency and climate change by these results.
We report a spontaneous and hierarchical self-assembly mechanism of carbon dots prepared from citric acid and urea into nanowire structures with large aspect ratios (>50). Scattering-type scanning near-field optical microscopy (s-SNOM) with broadly tunable mid-IR excitation was used to interrogate details of the self-assembly process by generating nanoscopic chemical maps of local wire morphology and composition. s-SNOM images capture the evolution of wire formation and the complex interplay between different chemical constituents directing assembly over the nano- to microscopic length scales. We propose that residual citrate promotes tautomerization of melamine surface functionalities to produce supramolecular shape synthons comprised of melamine-cyanurate adducts capable of forming long-range and highly directional hydrogen-bonding networks. This intrinsic, heterogeneity-driven self-assembly mechanism reflects synergistic combinations of high chemical specificity and long-range cooperativity that may be harnessed to reproducibly fabricate functional structures on arbitrary surfaces.
Effective diversion of surge currents is vital to prevent unwanted damage to sensitive electronics. Among the most successful and efficient strategies relies on a dielectric stimulated arc breakdown mechanism with high permittivity ceramic granules in a spark-gap geometry. Although generally regarded as a self-healing process, substantial energy deposition may occur that, over time, diminishes the ability to withstand repeated electrical assaults. We investigate the susceptibility of lead–magnesium–niobate–lead titanate (PMN–PT) granule microstructure and composition changes following many exposures to high voltage impulses resulting in arc breakdown. Scanning electron microscopy and energy-dispersive spectroscopy mapping reveal a broad range of thermal and mechanical defects entailing thermal reduction of constituent PMN–PT metal ions and recasting due to rapid eruption of volatile species. Additionally, evidence of local melting and microcracking are apparent that can have deleterious impact on the proper function of the granules, namely, the ability to concentrate electric fields across air gaps to establish and sustain discharge pathways. We propose that the localized nature of damage and stochasticity associated with the dielectric stimulated breakdown mechanism may allow granules to maintain functionality provided no permanent conduction paths are established.
Barium titanate (BTO) nanoparticles show great potential for use in electrostatic capacitors with high energy density. This includes both polymer composite and sintered capacitors. However, questions about the nanoparticles’ size distribution, amount of agglomeration, and surface ligand effect on performance properties remain. Reducing particle agglomeration is a crucial step to understanding the properties of nanoscale particles, as agglomeration has significant effects on the composite dielectric constant. BTO surface functionalization using phosphonic acids is known reduce BTO nanoparticle agglomeration. We explore solution synthesized 10 nm BTO particles with tert-butylphosphonic acid ligands. Recent methods to quantifying agglomeration using an epoxy matrix before imaging shows that tert-butylphosphonic acid ligands reduce BTO agglomeration by 33%. Thermometric, spectroscopic, and computational methods provide confirmation of ligand binding and provide evidence of multiple ligand binding modes on the BTO particle surface.