We describe a direct magneto-optical approach to measuring the magnetic field driven by a narrow pulse width (<10 ns), 20 kA electrical current flow in the transmission line of a high energy pulsed power accelerator. The magnetic field and electrical current are among the most important operating parameters in a pulsed power accelerator and are critical to understanding the properties of the radiation output. However, accurately measuring these fields and electrical currents using conventional pulsed power diagnostics is difficult due to the strength of ionizing radiation and electromagnetic interference. Our approach uses a fiber coupled laser beam with a rare earth element sensing crystal sensor that is highly resistant to electromagnetic interference and does not require external calibration. Here, we focus on device theory, operating parameters, results from an experiment on a high energy pulsed power accelerator, and comparison to a conventional electrical current shunt sensor.
It is necessary to establish confidence in high-consequence codes containing an extensive suite of physics algorithms in the regimes of interest. Verification problems allow code developers to assess numerical accuracy and increase confidence that specific sets of model physics were implemented correctly in the code. The two main verification techniques are code verification and solution verification. In this work, we present verification problems that can be used in other codes to increase confidence in simulations of relativistic beam transport. Specifically, we use the general plasma code EMPIRE to model and compare with the analytical solution to the evolution of the outer radial envelope of a relativistic charged particle beam. We also outline a benchmark test of a relativistic beam propagating through a vacuum and pressurized gas cell, and present the results between EMPIRE and the hybrid code GAZEL. Further, we discuss the subtle errors that were caught with these problems and detail lessons learned.