Publications

Results 79001–79200 of 99,299

Search results

Jump to search filters

Sandia National Laboratories California Waste Management Program Annual Report February 2008

Brynildson, Mark E.

The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

More Details

Parallel job scheduling policies to improve fairness : a case study

Leung, Vitus J.

Balancing fairness, user performance, and system performance is a critical concern when developing and installing parallel schedulers. Sandia uses a customized scheduler to manage many of their parallel machines. A primary function of the scheduler is to ensure that the machines have good utilization and that users are treated in a 'fair' manner. A separate compute process allocator (CPA) ensures that the jobs on the machines are not too fragmented in order to maximize throughput. Until recently, there has been no established technique to measure the fairness of parallel job schedulers. This paper introduces a 'hybrid' fairness metric that is similar to recently proposed metrics. The metric uses the Sandia version of a 'fairshare' queuing priority as the basis for fairness. The hybrid fairness metric is used to evaluate a Sandia workload. Using these results, multiple scheduling strategies are introduced to improve performance while satisfying user and system performance constraints.

More Details

Final LDRD report : infrared detection and power generation using self-assembled quantum dots

Cederberg, Jeffrey G.; Shaner, Eric A.; Ellis, A.R.

Alternative solutions are desired for mid-wavelength and long-wavelength infrared radiation detection and imaging arrays. We have investigated quantum dot infrared photodetectors (QDIPs) as a possible solution for long-wavelength infrared (8 to 12 {mu}m) radiation sensing. This document provides a summary for work done under the LDRD 'Infrared Detection and Power Generation Using Self-Assembled Quantum Dots'. Under this LDRD, we have developed QDIP sensors and made efforts to improve these devices. While the sensors fabricated show good responsivity at 80 K, their detectivity is limited by high noise current. Following efforts concentrated on how to reduce or eliminate this problem, but with no clear path was identified to the desired performance improvements.

More Details

Ultraviolet photodissociation of vinyl iodide: Understanding the halogen dependence of photodissociation mechanisms in vinyl halides

Physical Chemistry Chemical Physics

Strecker, Kevin S.; Jusinski, Leonard E.; Taatjes, Craig A.; Osborn, David L.

The photodissociation of vinyl iodide has been investigated at several wavelengths between 193 and 266 nm using three techniques: time-resolved Fourier transform emission spectroscopy, multiple pass laser absorption spectroscopy, and velocity-mapped ion imaging. The only dissociation channel observed is C-I bond cleavage to produce C2H3 (v, N) + I ( 2PJ) at all wavelengths investigated. Unlike photodissociation of other vinyl halides (C2H3X, X = F, Cl, Br), in which the HX product channel is significant, no HI elimination is observed. The angular and translational energy distributions of I atoms indicate that atomic products arise solely from dissociation on excited states with negligible contribution from internal conversion to the ground state. We derive an upper limit on the C-I bond strength of D0(C2H 3-I) ≤ 65 kcal mol-1. The ground-state potential-energy surface of vinyl iodide is explored by ab initio calculations. We present a model in which the highest occupied molecular orbital in vinyl halides has increasing X(np⊥) non-bonding character with increasing halogen mass. This change leads to reduced torsional force around the C-C bond in the excited state. Because the ground-state energy is highest when the CH 2 plane is perpendicular to the CHX plane, a reduced torsional force in the excited state correlates with a lower rate for internal conversion compared to excited-state C-X bond fission. This model explains the gradual change in photodissociation mechanisms of vinyl halides from the dominance of internal conversion in vinyl fluoride to the dominance of excited-state dissociation in vinyl iodide. © the Owner Societies.

More Details

Studies of the thermodynamic properties of hydrogen gas in bulk water

Journal of Physical Chemistry B

Sabo, Dubravko S.; Varma, Sameer; Martin, Marcus G.; Rempe, Susan B.

The thermodynamic properties of hydrogen gas in liquid water are investigated using Monte Carlo molecular simulation and the quasichemical theory of liquids. The free energy of hydrogen hydration obtained by Monte Carlo simulations agrees well with the experimental result, indicating that the classical force fields used in this work provide an adequate description of intermolecular interactions in the aqueous hydrogen system. Two estimates of the hydration free energy for hydrogen made within the framework of the quasichemical theory also agree reasonably well with experiment provided local anharmonic motions and distant interactions with explicit solvent are treated. Both quasichemical estimates indicate that the hydration free energy results from a balance between chemical association and molecular packing. Additionally, the results suggest that the molecular packing term is almost equally driven by unfavorable enthalpic and entropie components. © 2008 American Chemical Society.

More Details

Supersonic radiatively cooled rotating flows and jets in the laboratory

Physical Review Letters

Ampleford, David J.; Lebedev, S.V.; Ciardi, A.; Bland, S.N.; Bott, S.C.; Hall, G.N.; Naz, N.; Jennings, C.A.; Sherlock, M.; Chittenden, J.P.; Palmer, J.B.A.; Frank, A.; Blackman, E.

The first laboratory astrophysics experiments to produce a radiatively cooled plasma jet with dynamically significant angular momentum are discussed. A new configuration of wire array z pinch, the twisted conical wire array, is used to produce convergent plasma flows each rotating about the central axis. Collision of the flows produces a standing shock and jet that each have supersonic azimuthal velocities. By varying the twist angle of the array, the rotation velocity of the system can be controlled, with jet rotation velocities reaching ∼18% of the propagation velocity. © 2008 The American Physical Society.

More Details

Genome scale enzyme - Metabolite and drug - Target interaction predictions using the signature molecular descriptor

Bioinformatics

Faulon, Jean-Loup M.; Misra, Milind; Martin, Shawn; Sale, Kenneth L.; Sapra, Rajat

Motivation: Identifying protein enzymatic or pharmacological activities are important areas of research in biology and chemistry. Biological and chemical databases are increasingly being populated with linkages between protein sequences and chemical structures. There is now sufficient information to apply machine - learning techniques to predict interactions between chemicals and proteins at a genome scale. Current machine-learning techniques use as input either protein sequences and structures or chemical information. We propose here a method to infer protein - chemical interactions using heterogeneous input consisting of both protein sequence and chemical information. Results: Our method relies on expressing proteins and chemicals with a common cheminformatics representation. We demonstrate our approach by predicting whether proteins can catalyze reactions not present in training sets. We also predict whether a given drug can bind a target, in the absence of prior binding information for that drug and target. Such predictions cannot be made with current machine - learning techniques requiring binding information for individual reactions or individual targets. © 2007 The Author(s).

More Details

A combined ab initio and photoionization mass spectrometric study of polyynes in fuel-rich flames

Physical Chemistry Chemical Physics

Hansen, Nils; Klippenstein, S.J.; Westmoreland, P.R.; Kasper, Tina K.; Kohse-Höinghaus, K.; Wang, J.; Cool, T.A.

Polyynic structures in fuel-rich low-pressure flames are observed using VUV photoionization molecular-beam mass spectrometry. High-level ab initio calculations of ionization energies for C2nH2 (n = 1-5) and partially hydrogenated CnH4 (n = 7-8) polyynes are compared with photoionization efficiency measurements in flames fuelled by allene, propyne, and cyclopentene. C2nH2 (n = 1-5) intermediates are unambiguously identified, while HC≡C-C≡C-CH=C= CH2, HC≡C-C≡C-C≡C-CH=CH2 (vinyltriacetylene) and HC≡C-C≡C-CH=CH-C≡CH are likely to contribute to the C7H4 and C8H4 signals. Mole fraction profiles as a function of distance from the burner are presented. C7H4 and C8H4 isomers are likely to be formed by reactions of C2H and C4H radicals but other plausible formation pathways are also discussed. Heats of formation and ionization energies of several combustion intermediates have been determined for the first time. © the Owner Societies.

More Details

Investigation of compressible electromagnetic flute mode instability in finite beta plasma in support of Z-pinch and laboratory astrophysics experiments

Communications in Computational Physics

Sotnikov, V.I.; Ivanov, V.V.; Presura, R.; Leboeuf, J.N.; Onishchenko, O.G.; Oliver, Bryan V.; Jones, Brent M.; Mehlhorn, Thomas A.; Deeney, Chris

Flute mode turbulence plays an important role in numerous applications, such as tokamak, Z-pinch, space and astrophysical plasmas. In a low beta plasma flute oscillations are electrostatic and in the nonlinear stage they produce large scale density structures co-mingling with short scale oscillations. Large scale structures are responsible for the enhanced transport across the magnetic field and appearance of short scales leads to ion heating, associated with the ion viscosity. In the present paper nonlinear equations which describe the nonlinear evolution of the flute modes treated as compressible electromagnetic oscillations in a finite beta inhomogeneous plasma with nonuniform magnetic field are derived and solved numerically. For this purpose the 2D numerical code FLUTE was developed. Numerical results show that even in a finite beta plasma flute mode instability can develop along with formation of large scale structures co-existing with short scale perturbations in the nonlinear stage. © 2008 Global-Science Press.

More Details

Nonlinear deflection model for corner-supported, thin laminates shape-controlled with moment actuators

ASME International Mechanical Engineering Congress and Exposition, Proceedings

Chaplya, Pavel M.; Martin, Jeffrey W.; Reu, P.L.; Sumali, Hartono (Anton)

The shape control of thin, flexible structures has been studied primarily for edge-supported thin-plates. For applications such as electromagnetic wave reflectors, corner-supported configurations may prove more applicable since they allow for greater flexibility and larger achievable deflections when compared to edge-supported geometries under similar actuation conditions. Models of such structures provide insight for effective, realizable designs, enable design optimization, and provide a means of active shape control. Models for small deformations of corner-supported, thin laminates actuated by integrated piezoelectric actuators have been developed. However, membrane deflections expected for nominal actuation exceed those stipulated by linear, small deflection theories. In addition, large deflection models have been developed for membranes; however these models are not formulated for shape control. This paper extends a previously-developed linear model for a corner-supported thin, rectangular laminate to a more general large deflection model for a clamped-corner laminate composed of moment actuators and an array of actuating electrodes. First, a nonlinear model determining the deflected shape of a laminate given a distribution of actuation voltages is derived. Second, a technique is employed to formulate the model as a map between input voltage and deflection alone, making it suitable for shape control. Finally, comparisons of simulated deflections with measured deflections of a fabricated active laminate are investigated.

More Details

Evaluation of PIV uncertainties using multiple configurations and processing techniques

46th AIAA Aerospace Sciences Meeting and Exhibit

Beresh, Steven J.

Particle image velocimetry (PIV) data have been acquired using three different experimental configurations in the far-field of the interaction created by a transverse supersonic jet exhausting from a flat plate into a transonic crossflow. The configurations included two-component PIV in the centerline streamwise plane at two overlapping downstream stations, as well as stereoscopic PIV in both the same streamwise plane and in the crossplane. All measurement planes intersected at a common line. Data from both two-component measurement stations and the stereoscopic streamwise configuration agreed to within the estimated uncertainty, but data from the crossplane exhibited reduced velocity and turbulent stress magnitudes by a small but significant degree. Subsequent reprocessing of the data in nominally the same manner using a newer software package brought all values into close agreement with each other, but produced turbulent stresses substantially higher than those from the first software package. The error source associated with the choice of software was traced to the use of image deformation in the newer software to treat velocity gradients, which synthetic PIV tests show yields a more accurate result for turbulence measurements even for gradients within the recommended limits for classical PIV. These detailed comparisons of redundant data suggest that routine methods of uncertainty quantification may not fully capture the error sources of an experiment.

More Details

Galerkin reduced order models for compressible flow with structural interaction

46th AIAA Aerospace Sciences Meeting and Exhibit

Barone, Matthew F.; Segalman, Daniel J.; Thornquist, Heidi K.; Kalashnikova, Irina

The Galerkin projection procedure for construction of reduced order models of compressible flow is examined as an alternative discretization of the governing differential equations. The numerical stability of Galerkin models is shown to depend on the choice of inner product for the projection. For the linearized Euler equations, a symmetry transform leads to a stable formulation for the inner product. Boundary conditions for compressible flow that preserve stability of the reduced order model are constructed. Coupling with a linearized structural dynamics model is made possible through the solid wall boundary condition. Preservation of stability for the discrete implementation of the Galerkin projection is made possible using piecewise-smooth finite element bases. Stability of the coupled fluid/structure system is examined for the case of uniform flow past a thin plate. Stability of the reduced order model for the fluid is demonstrated on several model problems, where a suitable approximation basis is generated using proper orthogonal decomposition of a transient computational fluid dynamics simulation.

More Details

ALEGRA: An arbitrary Lagrangian-Eulerian multimaterial, multiphysics code

46th AIAA Aerospace Sciences Meeting and Exhibit

Robinson, Allen C.; Brunner, Thomas A.; Carroll, Susan; Richarddrake; Garasi, Christopher J.; Gardiner, Thomas; Haill, Thomas; Hanshaw, Heath; Hensinger, David; Labreche, Duane; Lemke, Raymond; Love, Edward; Luchini, Christopher; Mosso, Stewart; Niederhaus, John; Ober, Curtis C.; Petney, Sharon; Rider, William J.; Scovazzi, Guglielmo; Strack, O.E.; Summers, Randall; Trucano, Timothy; Weirs, V.G.; Wong, Michael; Voth, Thomas

ALEGRA is an arbitrary Lagrangian-Eulerian (multiphysics) computer code developed at Sandia National Laboratories since 1990. The code contains a variety of physics options including magnetics, radiation, and multimaterial flow. The code has been developed for nearly two decades, but recent work has dramatically improved the code's accuracy and robustness. These improvements include techniques applied to the basic Lagrangian differencing, artificial viscosity and the remap step of the method including an important improvement in the basic conservation of energy in the scheme. We will discuss the various algorithmic improvements and their impact on the results for important applications. Included in these applications are magnetic implosions, ceramic fracture modeling, and electromagnetic launch. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc.

More Details

Solute Mixing Models for Water-Distribution Pipe Networks

Journal of Hydraulic Engineering

Ho, Clifford K.

The spreading of solutes or contaminants through water-distribution pipe networks is controlled largely by mixing at pipe junctions where varying flow rates and concentrations can enter the junction. Alternative models of solute mixing within these pipe junctions are presented in this paper. Simple complete-mixing models are discussed along with rigorous computational-fluid-dynamics models based on turbulent Navier-Stokes equations. In addition, a new model that describes the bulk-mixing behavior resulting from different flow rates entering and leaving the junction is developed in this paper. Comparisons with experimental data have confirmed that this bulk-mixing model provides a lower bound to the amount of mixing that can occur within a pipe junction, while the complete-mixing model yields an upper bound. In addition, a simple scaling parameter is used to estimate the actual (intermediate) mixing behavior based on the bounding predictions of the complete-mixing and bulk-mixing models. These simple analytical models can be readily implemented into network-scale models to develop predictions and bounding scenarios of solute transport and water quality in water-distribution systems.

More Details

Design and performance of a high-repetition-rate single-frequency Yb:YAG microlaser

Schmitt, Randal L.

We describe the design and performance of a high-repetition-rate single-frequency passively Q-switched Yb:YAG microlaser operating near 1030 nm. By using short cavity length, an intracavity Brewster polarizer, and an etalon output coupler, we are able to produce {approx}1-ns-long single-frequency pulses at repetition rates up to 19 kHz without shot-to-shot mode hopping. The laser's output spatial mode is TEM{sub 00} and its pulse energy varies between 31 {micro}J and 47 {micro}J depending on repetition rate. Its peak optical-to-optical efficiency is 22%.

More Details

Weighting hyperspectral image data for improved multivariate curve resolution results

Journal of Chemometrics

Jones, Howland D.T.; Haaland, David M.; Sinclair, Michael B.; Melgaard, David K.; Van Benthem, Mark H.; Pedroso, M.C.

The combination of hyperspectral confocal fluorescence microscopy and multivariate curve resolution (MCR) provides an ideal system for improved quantitative imaging when multiple fluorophores are present. However, the presence of multiple noise sources limits the ability of MCR to accurately extract pure-component spectra when there is high spectral and/or spatial overlap between multiple fluorophores. Previously, MCR results were improved by weighting the spectral images for Poisson-distributed noise, but additional noise sources are often present. We have identified and quantified all the major noise sources in hyperspectral fluorescence images. Two primary noise sources were found: Poisson-distributed noise and detector-read noise. We present methods to quantify detector-read noise variance and to empirically determine the electron multiplying CCD (EMCCD) gain factor required to compute the Poisson noise variance. We have found that properly weighting spectral image data to account for both noise sources improved MCR accuracy. In this paper, we demonstrate three weighting schemes applied to a real hyperspectral corn leaf image and to simulated data based upon this same image. MCR applied to both real and simulated hyperspectral images weighted to compensate for the two major noise sources greatly improved the extracted pure emission spectra and their concentrations relative to MCR with either unweighted or Poisson-only weighted data. Thus, properly identifying and accounting for the major noise sources in hyperspectral images can serve to improve the MCR results. These methods are very general and can be applied to the multivariate analysis of spectral images whenever CCD or EMCCD detectors are used. Copyright © 2008 John Wiley & Sons, Ltd.

More Details

The effects of pre-processing of image data on self-modeling image analysis

Journal of Chemometrics

Windig, W.; Keenan, Michael R.; Wise, B.M.

The use of chemical imaging of secondary ion mass spectrometry (SIMS) data for self-modeling image analysis (SIA) has special challenges because of the following reasons: (a) At higher counting rates, the data are non-linear. (b) The heteroscedastic nature of the noise causes structure in the data which gives rise to extra components. (c) There is a high amount of noise in SIMS data and outliers often cause problems. This paper will discuss an adaptation of a pre-processing method to correct for heteroscedastic noise and a method to minimize the effect of outlying pixels. Examples will be given of the following: (a) Different mixtures of palmitic and stearic acid on aluminum foil. (b) A film coating of polyvinyl acetate (PVA) and polystyrene (PS). (c) A sample of copper and nickel and a fused layer. Copyright © 2008 John Wiley & Sons, Ltd.

More Details

Applied antineutrino physics workshop

This workshop is the fourth one of a series that includes the Neutrino Geophysics Conference at Honolulu, Hawaii, which I attended in 2005. This workshop was organized by the Astro-Particle and Cosmology laboratory in the recently opened Condoret building of the University of Paris. More information, including copies of the presentations, on the workshop is available on the website: www.apc.univ-paris7.fr/AAP2007/. The workshop aims at opening neutrino physics to various fields such that it can be applied in geosciences, nuclear industry (reactor and spent fuel monitoring) and non-proliferation. The workshop was attended by over 60 people from Europe, USA, Asia and Brazil. The meeting was also attended by representatives of the Comprehensive nuclear-Test Ban Treaty (CTBT) and the International Atomic Energy Agency (IAEA). The workshop also included a workshop dinner on board of a river boat sailing the Seine river.

More Details

Trilinear analysis of images obtained with a hyperspectral imaging confocal microscope

Journal of Chemometrics

Van Benthem, Mark H.; Keenan, Michael R.; Davis, Ryan W.; Liu, Ping; Jones, Howland D.T.; Haaland, David M.; Sinclair, Michael B.; Brasier, Allan R.

Hyperspectral imaging confocal microscopy (HSI-CM) is a powerful tool for the analysis of cellular processes such as the immune response. HSI-CM is a data rich technique that routinely generates two-way data having a spectral domain and an image or concentration domain. Using a variety of modifications to the instrument or experimental protocols, one can readily produce three-way data with HSI-CM. These data are often amenable to trilinear analysis. For example we have used a time series of 18 images acquired during photobleaching of the fluorophores in an effort to identify fluorescence resonance energy transfer (FRET). The resulting images represent intensity as a function of concentration, wavelength and photodegradation in time, to which we apply our techniques of trilinear decomposition. We have successfully employed trilinear decomposition of photobleaching spectral image data from fixed A549 cells transfected with yellow and green fluorescent proteins (YFP and GFP) as molecular probes of cellular proteins involved in the cellular immune response. While useful in the interpretation biological processes, the size of the data generated with the HSI-CM can be difficult to manage computationally. The 208 x 204 x 512 x 18 elements in the image data require careful processing and efficient analysis algorithms. Accordingly, we have implemented fast algorithms that can quickly perform the trilinear decomposition. In this paper we describe how three-way data are produced and the methods we have used to process them. Specifically, we show that co-adding spectra in a spatial neighborhood is a highly effective method for improving the performance of these algorithms without sacrificing resolution. Copyright © 2008 John Wiley & Sons, Ltd.

More Details

Rapid microchip-based electrophoretic immunoassays for the detection of swine influenza virus

Lab on a Chip

Reichmuth, David S.; Wang, Serena K.; Barrett, Louise M.; Throckmorton, Daniel J.; Einfeld, Wayne E.; Singh, Anup K.

Towards developing rapid and portable diagnostics for detecting zoonotic diseases, we have developed microchip-based electrophoretic immunoassays for sensitive and rapid detection of viruses. Two types of microchip-based electrophoretic immunoassays were developed. The initial assay used open channel electrophoresis and laser-induced fluorescence detection with a labeled antibody to detect influenza virus. However, this assay did not have adequate sensitivity to detect viruses at relevant concentrations for diagnostic applications. Hence, a novel assay was developed that allows simultaneous concentration and detection of viruses using a microfluidic chip with an integrated nanoporous membrane. The size-exclusion properties of the in situ polymerized polyacrylamide membrane are exploited to simultaneously concentrate viral particles and separate the virus/fluorescent antibody complex from the unbound antibody. The assay is performed in two simple steps-addition of fluorescently labeled antibodies to the sample, followed by concentration of antibody-virus complexes on a porous membrane. Excess antibodies are removed by electrophoresis through the membrane and the complex is then detected downstream of the membrane. This new assay detected inactivated swine influenza virus at a concentration four times lower than that of the open-channel electrophoresis assay. The total assay time, including device regeneration, is six minutes and requires <50 μl of sample. The filtration effect of the polymer membrane eliminates the need for washing, commonly required with surface-based immunoassays, increasing the speed of the assay. This assay is intended to form the core of a portable device for the diagnosis of high-consequence animal pathogens such as foot-and-mouth disease. The electrophoretic immunoassay format is rapid and simple while providing the necessary sensitivity for diagnosis of the illness state. This would allow the development of a portable, cost-effective, on-site diagnostic system for rapid screening of large populations of livestock, including sheep, pigs, cattle, and potentially birds. © The Royal Society of Chemistry.

More Details

Type X and y errors and data & model conditioning for systematic uncertainty in model calibration, validation, and extrapolation

SAE Technical Papers

Romero, Vicente J.

This paper introduces and develops the concept of "Type X" and "Type Y" errors in model validation and calibration, and their implications on extrapolative prediction. Type X error is non-detection of model bias because it is effectively hidden by the uncertainty in the experiments. Possible deleterious effects of Type X error can be avoided by mapping uncertainty into the model until it envelopes the potential model bias, but this likely assigns a larger uncertainty than is needed to account for the actual bias (Type Y error). A philosophy of Best Estimate + Uncertainty modeling and prediction is probably best supported by taking the conservative choice of guarding against Type X error while accepting the downside of incurring Type Y error. An associated methodology involving data-and model-conditioning is presented and tested on a simple but rich test problem. The methodology is shown to appropriately contend with model bias under conditions of systematic experimental input uncertainty in the test problem. The methodology effectively bounds the uncertain model bias and brings a correction into the model that extrapolates very well under a large variety of extrapolation conditions. The methodology has been straightforwardly applied to considerably more complex real problems where system response is likewise jointly monotonic in the input uncertainties. The methodology also allows for other types of systematic and random uncertainty in the experiments and model as discussed herein. Copyright © 2008 SAE International.

More Details

Maximally confined high-speed second-order silicon microdisk switches

Optics InfoBase Conference Papers

Watts, Michael R.; Trotter, Douglas C.; Young, Ralph W.

We demonstrate the first high-speed second-order silicon microdisk bandpass switch. The switch, constructed of a pair of 3μm radii active microdisks possesses ~40GHz flat-top passbands, a 4.2THz free-spectral-range, and a 2.4ns switching time. © 2008 Optical Society of America.

More Details

Using atomistic simulations to inform mesoscale simulations of microstructural evolution

Proceedings of 4th International Conference on Multiscale Materials Modeling, MMM 2008

Foiles, Stephen M.; Olmsted, David L.; Holm, Elizabeth A.

Predicting and controlling the evolution of materials microstructure is one of the central challenges of materials science. The simulation of microstructural evolution requires a detailed knowledge of the properties, including energies and mobilities, of interfaces in the material. We present the results of molecular dynamics simulations of these interfacial properties for a large set of boundaries.

More Details

Fundamental and overtone aluminum nitride dual mode resonator filters

Technical Digest - Solid-State Sensors, Actuators, and Microsystems Workshop

Olsson, Roy H.; Tuck, Melanie R.

This paper reports post-CMOS compatible aluminum nitride dual mode resonator filters that realize 4th order band-pass filters in a single resonator device. Dual mode filters at 106 MHz operating in their fundamental mode are reported with insertion losses as low as 5.5 dB when terminated with 150 Ω. A notching technique is demonstrated for varying the 3 dB bandwidth of these filters from 0.15 to 0.7%, overcoming a significant limitation of previous work. Dual mode filters operating at their 5th and 10th overtones are reported scaling the operating frequencies of this class of device to 0.55 and 1.1 GHz.

More Details

Low-power electrothermal actuation for microelectromechanical systems

Journal of Micro/Nanolithography, MEMS, and MOEMS

Skinner, Jack L.; Dentinger, Paul M.; Strong, Fabian W.; Gianoulakis, Steven E.

Electrothermal actuation has been used in microelectromechanical systems where low actuation voltage and high contact force are required. Power consumption to operate electrothermal actuators has typically been higher than with electrostatic actuation. A method of designing and processing electrothermal actuators is presented that leads to an order of magnitude reduction in required power while maintaining the low voltage, high force advantages. The substrate was removed beneath the actuator beams, thereby discarding the predominant power loss mechanism and reducing the required actuation power by an order of magnitude. Measured data and theoretical results from electrothermally actuated switches are presented to confirm the method. © 2008 Society of Photo-Optical Instrumentation Engineers.

More Details

Post-cmos compatible aluminum nitride ring wave guide (RWG) resonators

Technical Digest - Solid-State Sensors, Actuators, and Microsystems Workshop

Wojciechowski, Kenneth E.; Olsson, Roy H.; Tuck, Melanie R.

This work presents a new type of MEMS resonator based on launching an acoustic wave around a ring. Its maximum frequency is set by electrode spacing and can therefore provide a means for developing resonators with center frequencies in the GHz. In addition since the center frequency is dependent on the average radius it is not subject to lithographic process variations in ring width. We have demonstrated several Ring Waveguide (RWG) Resonators with center frequencies at 484 MHz and 1 GHz. In addition we have demonstrated a 4th order filter based on a RWG design.

More Details

Thermodynamics of gaseous hydrogen and hydrogen transport in metals

Materials Research Society Symposium Proceedings

San Marchi, Chris; Somerday, Brian P.

The thermodynamics and kinetics of hydrogen dissolved in structural metals is often not addressed when assessing phenomena associated with hydrogen-assisted fracture. Understanding the behavior of hydrogen atoms in a metal lattice, however, is important for interpreting materials properties measured in hydrogen environments, and for designing structurally efficient components with extended lifecycles. The assessment of equilibrium hydrogen contents and hydrogen transport in steels is motivated by questions raised in the safety, codes and standards community about mixtures of gases containing hydrogen as well as the effects of stress and hydrogen trapping on the transport of hydrogen in metals. More broadly, these questions are important for enabling a comprehensive understanding of hydrogen-assisted fracture. We start by providing a framework for understanding the thermodynamics of pure gaseous hydrogen and then we extend this to treat mixtures of gases containing hydrogen. An understanding of the thermodynamics of gas mixtures is necessary for analyzing concepts for transitioning to a hydrogen-based economy that incorporate the addition of gaseous hydrogen to existing energy carrier systems such as natural gas distribution. We show that, at equilibrium, a mixture of gases containing hydrogen will increase the fugacity of the hydrogen gas, but that this increase is small for practical systems and will generally be insufficient to substantially impact hydrogen-assisted fracture. Further, the effects of stress and hydrogen trapping on the transport of atomic hydrogen in metals are considered. Tensile stress increases the amount of hydrogen dissolved in a metal and slightly increases hydrogen diffusivity. In some materials, hydrogen trapping has very little impact on hydrogen content and transport, while other materials show orders of magnitude increases of hydrogen content and reductions of hydrogen diffusivity. © 2008 Materials Research Society.

More Details

High-speed switching of a 1.55-μm symmetric SEED

Optics InfoBase Conference Papers

Keeler, Gordon A.; Serkland, Darwin K.; Hsu, Alan Y.; Geib, Kent M.; Overberg, Mark E.; Klem, John F.

We demonstrate high-speed switching of a symmetric self-electrooptic effect device (S-SEED) operating at 1550 nm. Transitions faster than 10 ps are observed, verifying the suitability of this technology for integrated logic operations beyond 40 GHz. © 2008 Optical Society of America.

More Details

Finite-difference modeling of 3D seismic wave propagation in high-contrast media

SEG Technical Program Expanded Abstracts

Preston, Leiph; Aldridge, David F.; Symons, Neill P.

Stable and accurate numerical modeling of seismic wave propagation in the vicinity of high-contrast interfaces is achieved with straightforward modifications to the conventional, rectangular-staggered-grid, finite-difference (FD) method. Improvements in material parameter averaging and spatial differencing of wavefield variables yield high-quality synthetic seismic data.

More Details

A study of node-based architectures for satellite systems

26th AIAA International Communications Satellite Systems Conference, ICSSC

Kalb, Jeffrey L.; Eldridge, John M.; Heine, David H.; Lee, David S.; Wertz, Jason W.

Packet switched data communication networks that use distributed processing architectures have the potential to simplify the design and development of new and increasingly sophisticated satellite payloads. Distributed network architectures can improve system reliability and capability and reduce size, weight, and power when compared to current architectures. This study performed a broad review of network characteristics and architectures for use on-board future satellite payloads. The concepts of topology selection, commercially available communication protocols, and architecture modeling and simulation were studied, and the results are presented in this paper. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc.

More Details

Components for atomistic-to-continuum multiscale modeling of flow in micro- and nanofluidic systems

Scientific Programming

Adalsteinsson, Helgi; Debusschere, Bert; Najm, Habib N.

Micro- and nanofluidics pose a series of significant challenges for science-based modeling. Key among those are the wide separation of length- and timescales between interface phenomena and bulk flow and the spatially heterogeneous solution properties near solid-liquid interfaces. It is not uncommon for characteristic scales in these systems to span nine orders of magnitude from the atomic motions in particle dynamics up to evolution of mass transport at the macroscale level, making explicit particle models intractable for all but the simplest systems. Recently, atomistic-to-continuum (A2C) multiscale simulations have gained a lot of interest as an approach to rigorously handle particle-level dynamics while also tracking evolution of large-scale macroscale behavior. While these methods are clearly not applicable to all classes of simulations, they are finding traction in systems in which tight-binding, and physically important, dynamics at system interfaces have complex effects on the slower-evolving large-scale evolution of the surrounding medium. These conditions allow decomposition of the simulation into discrete domains, either spatially or temporally. In this paper, we describe how features of domain decomposed simulation systems can be harnessed to yield flexible and efficient software for multiscale simulations of electric field-driven micro- and nanofluidics. © 2008 - IOS Press and the authors. All rights reserved.

More Details

Integrated optical bio sensors

Optics InfoBase Conference Papers

Brener, Igal

We will present our recent progress on 1) waveguide-based sensor arrays that can operate as high density immunoassay sensors for detection of proteins and other biomolecules in solution, 2) metamaterial and plasmonic-based chem-bio sensors. © 2008 Optical Society of America.

More Details

A mesh optimization algorithm to decrease the maximum error in finite element computations

Proceedings of the 17th International Meshing Roundtable, IMR 2008

Hetmaniuk, U.; Knupp, Patrick K.

We present a mesh optimization algorithm for adaptively improving the finite element interpolation of a function of interest. The algorithm minimizes an objective function by swapping edges and moving nodes. Numerical experiments are performed on model problems. The results illustrate that the mesh optimization algorithm can reduce the W1,∞ semi-norm of the interpolation error. For these examples, the L2, L∞, and H1 norms decreased also.

More Details

Mesh matching - Creating conforming interfaces between hexahedral meshes

Proceedings of the 17th International Meshing Roundtable, IMR 2008

Staten, Matthew L.; Shepherd, Jason F.; Shimada, Kenji

This paper presents a new method for handling non-conforming hexahedralto- hexahedral interfaces. One or both of the adjacent hexahedralmeshes are locally modified to create a one-to-onemapping between between themesh nodes and quadrilaterals at the interface allowing a conforming mesh to be created. In the finite element method, non-conforming interfaces are currently handled using constraint conditions such as gapelements, tied contacts, or multi-point constraints. By creating a conforming mesh, the need for constraint conditions is eliminated resulting in a smoother, more precise numerical solution. The method presented in this paper uses hexahedral dual operations, including pillowing, sheet extraction, dicing and column collapse operations, to affect the local mesh modifications. In addition, an extension to pillowing, called sheet inflation, is introduced to handle the insertion of self-intersecting and self-touching sheets. The quality of the resultant conforming hexahedral mesh is high and the increase in number of elements is moderate.

More Details

Planar velocimetry of a fin trailing vortex in subsonic compressible flow

38th AIAA Fluid Dynamics Conference and Exhibit

Beresh, Steven J.; Henfling, John F.; Spillers, Russell

A sub-scale experiment has been conducted to study the trailing vortex shed from a tapered fin installed on a wind tunnel wall to represent missile configurations. Stereoscopic particle image velocimetry measurements have been acquired in the near-field for several locations downstream of the fin tip and at different fin angles of attack. The vortex's tangential velocity is found to decay with downstream distance while its radius increases, but the vortex core circulation remains constant. Circulation and tangential velocity rise greatly for increased fin angle of attack, but the radius is approximately constant or slightly decreasing. The vortex axial velocity is always a deficit, whose magnitude diminishes with downstream distance and smaller angle of attack. No variation with Mach number can be discerned in the normalized velocity data. Vortex roll-up is observed to be largely complete by about four root chord lengths downstream of the fin trailing edge. Prior to this point, the vortex is asymmetric in the tangential velocity but the core radius stays nearly constant. Vortical rotation draws low-speed turbulent fluid from the wind tunnel wall boundary layer into the vortex core, which appears to hasten vortex decay and produce a larger axial velocity deficit than might be expected. Self-similarity of the vortex is established even while it is still rolling up. Attempts to normalize vortex properties by the fin's lift coefficient proved unsuccessful.

More Details

Terascale direct numerical simulations of turbulent combustion - Fundamental understanding towards predictive models

Journal of Physics: Conference Series

Chen, Jacqueline H.; Richardson, Edward S.

Advances in high-performance computational capabilities enable scientific simulations with increasingly realistic physical representations. This situation is especially true of turbulent combustion involving multiscale interactions between turbulent flow, complex chemical reaction, and scalar transport. A fundamental understanding of combustion processes is crucial to the development and optimization of next-generation combustion technologies operating with alternative fuels, at higher pressures, and under less stable operating conditions, such as highly dilute, stratified mixtures. Direct numerical simulations (DNS) of turbulent combustion resolving all flow and chemical features in canonical configurations are used to improve fundamental understanding of complex flow processes and to provide a database for the development and validation of combustion models. A description of the DNS solver and its optimization for use in massively parallel simulations is presented. Recent DNS results from a series of three combustion configurations are presented: soot formation and transport in a nonpremixed ethylene jet flame, the effect of fuel stratification in methane Bunsen flames, and extinction and reignition processes in nonpremixed ethylene jet flames. © 2008 IOP Publishing Ltd.

More Details

The influence of velocity gradients on PIV measurements of turbulence statistics: A preliminary study

26th AIAA Aerodynamic Measurement Technology and Ground Testing Conference

Beresh, Steven J.

Error in Particle Image Velocimetry (PIV) interrogation due to velocity gradients in turbulent flows was studied for both classical and advanced algorithms. Classical algorithms are considered to be digital cross-correlation analysis including discrete window offsets and, for the present work, advanced algorithms are those using image deformation to compensate for velocity gradients. Synthetic PIV simulations revealed substantial negative biases in the turbulent stress for classical algorithms even for velocity gradients within recommended PIV design limits. This bias worsens if the distribution of velocity gradients has a nonzero mean, and error in the mean velocity may be introduced as well. Conversely, advanced algorithms do not exhibit this bias error if the velocity gradients are linear. Nonlinear velocity gradients increase the error in classical algorithms and a significant negative bias in the turbulent stress arises for the advanced algorithm as well. Two experimental data sets showed substantially lower turbulent stresses for the classical algorithm compared with the advanced algorithm, as predicted. No new experimental design rules for advanced algorithms are yet proposed, but any such recommendation would concern second-order velocity derivatives rather than first order.

More Details

Selective extraction of recombinant proteins by multiple-affinity two-phase partitioning in microchannels

12th International Conference on Miniaturized Systems for Chemistry and Life Sciences - The Proceedings of MicroTAS 2008 Conference

Meagher, Robert M.; Light, Yooli K.; Singh, Anup K.

We have demonstrated purification of proteins in a simple aqueous two-phase extraction process in a microfluidic device. The laminar flows inherent to microchannels allows us to perform a binary split of a complex cell lysate sample, in an open channel with no chromatography support and no moving parts. This mild process allows recovery of functional proteins with a modest increase in purity. Aromatic-rich fusion tags are used to drive partitioning of enzymes in a generic PEG-salt two-phase system. Addition of affinity ligands to the PEG phase allows us to exploit other popular fusion tags, such as polyhistidine tags and GST-tags. © 2008 CBMS.

More Details

Precise microscale polymer gradients applied to isoelectric focusing and pore limit electrophoresis

12th International Conference on Miniaturized Systems for Chemistry and Life Sciences - The Proceedings of MicroTAS 2008 Conference

Sommer, Gregory J.; Singh, Anup K.; Hatch, Anson

We demonstrate the power of our technique for establishing and immobilizing well-defined polymer gradients in microchannels by fabricating two miniaturized analytical platforms: microscale immobilized pH gradients (μIPGs) for rapid and high resolution isoelectric focusing (IEF) applications, and polyacrylamide porosity gradients to achieve microscale pore limit electrophoresis (μPLE) in which species are separated based on molecular size by driving them toward the pore size at which migration ceases. Both separation techniques represent the first microscale implementation of their respective methodologies.

More Details

Simulations of water at the interface with hydrophilic self-assembled monolayers

Biointerphases

Stevens, Mark J.; Grest, Gary S.

Simulations of water at hydrophilic self-assembled monolayer (SAM) surfaces are especially relevant for biological interfaces. Well-defined, atomically smooth surfaces that can be continuously varied are possible with SAMs. These characteristics enable more accurate measurements than many other surfaces with the added advantage of tailoring the surface to treat specific chemical groups. A fundamental question is how solid surfaces affect the structure and dynamics of water. Measurements of the structure and dynamics of water at solid surfaces have improved significantly, but there remain differences among the experiments. In this article, the authors review simulations of water at the interface with hydrophilic SAMs. These simulations find that while the interfacial water molecules are slower than the bulk water molecules, the interfacial dynamics remains that of a liquid. A major biological application of SAMs is for making coatings resistant to protein adsorption. SAMs terminated with ethylene glycol monomers have proven to be excellent at resisting protein adsorption. Understanding the mechanisms behind this resistance remains an unresolved issue. Recent simulations suggest a new perspective of the role of interfacial water and the inseparable interplay between the SAM and the water. © 2008 American Vacuum Society.

More Details

A unified architecture for cognition and motor control based on neuroanatomy, psychophysical experiments, and cognitive behaviors

AAAI Fall Symposium - Technical Report

Rohrer, Brandon R.

A Brain-Emulating Cognition and Control Architecture (BECCA) is presented. It is consistent with the hypothesized functions of pervasive intra-cortical and cortico-subcortical neural circuits. It is able to reproduce many salient aspects of human voluntary movement and motor learning. It also provides plausible mechanisms for many phenomena described in cognitive psychology, including perception and mental modeling. Both "inputs" (afferent channels) and "outputs"' (efferent channels) are treated as neural signals; they are all binary (either on or off) and there is no meaning, information, or tag associated with any of them. Although BECCA initially has no internal models, it learns complex interrelations between outputs and inputs through which it bootstraps a model of the system it is controlling and the outside world. BECCA uses two key algorithms to accomplish this: S-Learning and Context-Based Similarity (CBS).

More Details

Ultra-rapid sample preconcentration under slant field using high-aspect-ratio nanoporous membranes

12th International Conference on Miniaturized Systems for Chemistry and Life Sciences - The Proceedings of MicroTAS 2008 Conference

Wang, Ying-Chih W.; Singh, Anup K.; Hatch, Anson

We describe a novel approach to fabricate high-aspect-ratio membranes in microchannels by direct laser scanning, and demonstrate >10-fold improvement in sample preconcentration speed by achieving lower fM detection of proteins within 5 minutes. The integrated device can be used for continuous sample preparation, injection, preconcentration, and biochemical binding/reaction applications. © 2008 CBMS.

More Details

Interaction of a fin trailing vortex with a downstream control surface

46th AIAA Aerospace Sciences Meeting and Exhibit

Beresh, Steven J.; Smith, Justin; Henfling, John F.; Grasser, Thomas; Spillers, Russell

A sub-scale experiment has been constructed using fins mounted on one wall of a transonic wind tunnel to investigate the influence of fin trailing vortices upon downstream control surfaces. Data are collected using a fin balance instrumenting the downstream fin to measure the aerodynamic forces of the interaction, combined with stereoscopic Particle Image Velocimetry to determine vortex properties. The fin balance data show that the response of the downstream fin essentially is shifted from the baseline single-fin data dependent upon the angle of attack of the upstream fin. Freestream Mach number and the spacing between fins have secondary effects. The velocimetry shows that the vortex strength increases markedly with upstream fin angle of attack, though even an uncanted fin generates a noticeable wake. No variation with Mach number can be discerned in the normalized velocity data. Correlations between the force data and the velocimetry suggest that the interaction is fundamentally a result of an angle of attack superposed upon the downstream fin by the vortex shed from the upstream fin tip. The Mach number influence arises from differing vortex lift on the leading edge of the downstream fin even when the impinging vortex is Mach invariant.

More Details
Results 79001–79200 of 99,299
Results 79001–79200 of 99,299