Publications

Results 1–25 of 36

Search results

Jump to search filters

EDS V26 Vessel Clamp Explosive Test Report

Haroldsen, Brent L.; Crocker, Robert W.; Stofleth, Jerome H.

This report documents the results of explosive re-qualification tests of the EDS V26 Vessel that were conducted at Sandia National Laboratories in Albuquerque, New Mexico in May 2015 following the retrofitting of the vessel with a three piece clamp for use on the P2A system. The V26 containment vessel is the second EDS vessel to be fabricated under Code Case 2564 of the ASME Boiler and Pressure Vessel Code, which provides rules for the design of impulsively loaded vessels. The explosive rating for the vessel, based on the code case, is nine (9) pounds TNT-equivalent for up to 637 detonations. The goals of the tests were to qualify the vessel, particularly the clamping system, for explosive use. The explosive tests consisted of a 9 pound bare charge of Composition C-4 (equivalent to 11.25 pounds TNT), followed by a 7.2 pound bare charge of Composition C-4 (equivalent to 9 pounds of TNT). Helium permeation measurements of the seal and strain measurements using a pi tape and strain gauges were made. All vessel acceptance criteria were met.

More Details

Design basis of an impulsively loaded vessel for specific loading configurations

American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP

Yip, Mien Y.; Haroldsen, Brent L.

For an impulsively loaded containment vessel, such as the Sandia Explosive Destruction System (EDS), the traditional notion of a single-value explosive rating may not be sufficient to qualify the vessel for many real-life loading situations, such as those involving multiple munitions placed in various geometric configurations. Other significant factors, including detonation timing, geometry of explosive(s), and standoff distances, need to be considered for a more accurate assessment of the vessel integrity. It is obvious that the vessel structural response from an explosive charge detonated at the geometric center of the vessel will be very different from the structural response from the same explosive charge detonated next to the vessel wall. It is, however, less obvious that the same explosive can produce vastly different vessel response if it is detonated at one end versus at the middle versus from both ends. The goal of this paper is to identify some of the effects that non-trivial loading situations have on the vessel structural integrity. The metric for determining vessel integrity is based on Code Case 2564 of the ASME Boiler and Pressure Vessel Code. Based on the findings of this work, it may be necessary to qualify impulsively loaded containment vessels for specific explosive configurations, which should include the quantity, geometry and location of the explosives, as well as the detonation points. Copyright © 2013 by ASME.

More Details

Experience with using code case 2564 to design and certify an impulsively loaded vessel

American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP

Haroldsen, Brent L.; Stofleth, Jerome H.; Yip, Mien Y.

Code Case 2564 for the design of impulsively loaded vessels was approved in January 2008. In 2010 the US Army Non-Stockpile Chemical Materiel Program, with support from Sandia National Laboratories, procured a vessel per this Code Case for use on the Explosive Destruction System (EDS). The vessel was delivered to the Army in August of 2010 and approved for use by the DoD Explosives Safety Board in 2012. Although others have used the methodology and design limits of the Code Case to analyze vessels, to our knowledge, this was the first vessel to receive an ASME explosive rating with a U3 stamp. This paper discusses lessons learned in the process. Of particular interest were issues related to defining the design basis in the User Design Specification and explosive qualification testing required for regulatory approval. Specifying and testing an impulsively loaded vessel is more complicated than a static pressure vessel because the loads depend on the size, shape, and location of the explosive charges in the vessel and on the kind of explosives used and the point of detonation. Historically the US Department of Defense and Department of Energy have required an explosive test. Currently the Code Case does not address testing requirements, but it would be beneficial if it did since having vetted, third party standards for explosive qualification testing would simplify the process for regulatory approval. Copyright © 2013 by ASME.

More Details

EDS V26 Containment Vessel Explosive Qualification Test Report

Crocker, Robert W.; Haroldsen, Brent L.; Stofleth, Jerome H.

The objective of the test was to qualify the vessel for its intended use by subjecting it to a 1.25 times overtest. The criteria for success are that the measured strains do not exceed the calculated strains from the vessel analysis, there is no significant additional plastic strain on subsequent tests at the rated design load (shakedown), and there is no significant damage to the vessel and attached hardware that affect form, fit, or function. Testing of the V25 Vessel in 2011 established a precedent for testing V26 [2]. As with V25, two tests were performed to satisfy this objective. The first test used 9 pounds of Composition C-4 (11.25 lbs. TNT-equivalent), which is 125 percent of the design basis load. The second test used 7.2 pounds of Composition C-4 (9 lbs. TNT-equivalent) which is 100 percent of the design basis load. The first test provided the required overtest while the second test served to demonstrate shakedown and the absence of additional plastic deformation. Unlike the V25 vessel, which was mounted in a shipping cradle during testing, the V26 vessel was mounted on the EDS P2U3 trailer prior to testing. Visual inspections of the EDS vessel, surroundings, and diagnostics were completed before and after each test event. This visual inspection included analyzing the seals, fittings, and interior surfaces of the EDS vessel and documenting any abnormalities or damages. Photographs were used to visually document vessel conditions and findings before and after each test event.

More Details

Metallurgical examination of impulsively loaded vessels

Materials Science and Technology Conference and Exhibition 2012, MS and T 2012

Burns, Michael G.; Haroldsen, Brent L.; Yip, Mien Y.

Establishing design and inspection criteria for impulsively loaded vessels requires a precise understanding of the damage mechanisms and failure modes experienced by the vessels. To that end, Stress Engineering Services, Inc. performed a metallurgical examination of three impulsively loaded vessels that Sandia National Laboratories had intentionally tested to failure, two by impulsive loading and one by hydrotest after impulsive load testing. The vessels were scale models of Type 316 stainless steel vessels use for disposal of chemical ordnance. The examination identified microstructural effects, mechanical damage, and fractographic features associated with exposure to impulsive loads. In particular, the examination identified damage associated with wave interference patterns and unusual patterns of deformation and cracking associated with residual ferrite stringers within the austenitic matrix of the alloy. The characterization of the damage mechanisms leading to failure has direct relevance to ASME design criteria, to the selection of appropriate materials, and to inspection practices for impulsively loaded vessels.

More Details

Life assessment of full-scale EDS vessel under impulsive loadings

American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP

Yip, Mien Y.; Haroldsen, Brent L.

The Explosive Destruction System (EDS) was developed by Sandia National Laboratories for the US Army Product Manager for Non-Stockpile Chemical Materiel (PMNSCM) to destroy recovered, explosively configured, chemical munitions. PMNSCM currently has five EDS units that have processed over 1,400 items. The system uses linear and conical shaped charges to open munitions and attack the burster followed by chemical treatment of the agent. The main component of the EDS is a stainless steel, cylindrical vessel, which contains the explosion and the subsequent chemical treatment. Extensive modeling and testing have been used to design and qualify the vessel for different applications and conditions. The high explosive (HE) pressure histories and subsequent vessel response (strain histories) are modeled using the analysis codes CTH and LS-DYNA, respectively. Using the model results, a load rating for the EDS is determined based on design guidance provided in the ASME Code, Sect. VIII, Div. 3, Code Case No. 2564. One of the goals is to assess and understand the vessel's capacity in containing a wide variety of detonation sequences at various load levels. Of particular interest are to know the total number of detonation events at the rated load that can be processed inside each vessel, and a maximum load (such as that arising from an upset condition) that can be contained without causing catastrophic failure of the vessel. This paper will discuss application of Code Case 2564 to the stainless steel EDS vessels, including a fatigue analysis using a J-R curve, vessel response to extreme upset loads, and the effects of strain hardening from successive events. Copyright © 2010 by ASME.

More Details
Results 1–25 of 36
Results 1–25 of 36