EDS Containment Vessel Explosive Test and Analysis
Abstract not provided.
Abstract not provided.
American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
Code Case 2564 for the design of impulsively loaded vessels was approved in January 2008. In 2010 the US Army Non-Stockpile Chemical Materiel Program, with support from Sandia National Laboratories, procured a vessel per this Code Case for use on the Explosive Destruction System (EDS). The vessel was delivered to the Army in August of 2010 and approved for use by the DoD Explosives Safety Board in 2012. Although others have used the methodology and design limits of the Code Case to analyze vessels, to our knowledge, this was the first vessel to receive an ASME explosive rating with a U3 stamp. This paper discusses lessons learned in the process. Of particular interest were issues related to defining the design basis in the User Design Specification and explosive qualification testing required for regulatory approval. Specifying and testing an impulsively loaded vessel is more complicated than a static pressure vessel because the loads depend on the size, shape, and location of the explosive charges in the vessel and on the kind of explosives used and the point of detonation. Historically the US Department of Defense and Department of Energy have required an explosive test. Currently the Code Case does not address testing requirements, but it would be beneficial if it did since having vetted, third party standards for explosive qualification testing would simplify the process for regulatory approval. Copyright © 2013 by ASME.
American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
For an impulsively loaded containment vessel, such as the Sandia Explosive Destruction System (EDS), the traditional notion of a single-value explosive rating may not be sufficient to qualify the vessel for many real-life loading situations, such as those involving multiple munitions placed in various geometric configurations. Other significant factors, including detonation timing, geometry of explosive(s), and standoff distances, need to be considered for a more accurate assessment of the vessel integrity. It is obvious that the vessel structural response from an explosive charge detonated at the geometric center of the vessel will be very different from the structural response from the same explosive charge detonated next to the vessel wall. It is, however, less obvious that the same explosive can produce vastly different vessel response if it is detonated at one end versus at the middle versus from both ends. The goal of this paper is to identify some of the effects that non-trivial loading situations have on the vessel structural integrity. The metric for determining vessel integrity is based on Code Case 2564 of the ASME Boiler and Pressure Vessel Code. Based on the findings of this work, it may be necessary to qualify impulsively loaded containment vessels for specific explosive configurations, which should include the quantity, geometry and location of the explosives, as well as the detonation points. Copyright © 2013 by ASME.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Materials Science and Technology Conference and Exhibition 2012, MS and T 2012
Establishing design and inspection criteria for impulsively loaded vessels requires a precise understanding of the damage mechanisms and failure modes experienced by the vessels. To that end, Stress Engineering Services, Inc. performed a metallurgical examination of three impulsively loaded vessels that Sandia National Laboratories had intentionally tested to failure, two by impulsive loading and one by hydrotest after impulsive load testing. The vessels were scale models of Type 316 stainless steel vessels use for disposal of chemical ordnance. The examination identified microstructural effects, mechanical damage, and fractographic features associated with exposure to impulsive loads. In particular, the examination identified damage associated with wave interference patterns and unusual patterns of deformation and cracking associated with residual ferrite stringers within the austenitic matrix of the alloy. The characterization of the damage mechanisms leading to failure has direct relevance to ASME design criteria, to the selection of appropriate materials, and to inspection practices for impulsively loaded vessels.
Abstract not provided.
Abstract not provided.
American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
Steel pressure vessels are commonly used for the transport of pressurized gases, including gaseous hydrogen. In the majority of cases, these transport cylinders experience relatively few pressure cycles over their lifetime, perhaps as many as 25 per year, and generally significantly less. For fueling applications, as in fuel tanks on hydrogen-powered industrial trucks, the hydrogen fuel systems may experience thousands of cycles over their lifetime. Similarly, it can be anticipated that the use of tube trailers for large-scale distribution of gaseous hydrogen will require lifetimes of thousands of pressure cycles. This study investigates the fatigue life of steel pressure vessels that are similar to transport cylinders by subjecting full-scale vessels to pressure cycles with gaseous hydrogen between nominal pressure of 3 and 44 MPa. In addition to pressure cycling of vessels that are similar to those in service, engineered defects were machined on the inside of several pressure vessels to simulate manufacturing defects and to initiate failure after relatively low number of cycles. Failure was not observed in as-manufactured vessels with more than 55,000 pressure cycles, nor in vessels with relatively small, engineered defects subjected to more than 40,000 cycles. Large engineered defects (with depth greater than 5% of the wall thickness) resulted in failure after 8,000 to 15,000 pressure cycles. Defects machined to depths less than 5% wall thickness did not induce failures. Four pressure vessel failures were observed during the course of this project and, in all cases, failure occurred by leak before burst. The performance of the tested vessels is compared to two design approaches: fracture mechanics design approach and traditional fatigue analysis design approach. The results from this work have been used as the basis for the design rules for Type 1 fuel tanks in the standard entitled "Compressed Hydrogen-Powered Industrial Truck, On-board Fuel Storage and Handling Components (HPIT1)" from CSA America. Copyright © 2012 by ASME.
American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
The Explosive Destruction System (EDS) was developed by Sandia National Laboratories for the US Army Product Manager for Non-Stockpile Chemical Materiel (PMNSCM) to destroy recovered, explosively configured, chemical munitions. PMNSCM currently has five EDS units that have processed over 1,400 items. The system uses linear and conical shaped charges to open munitions and attack the burster followed by chemical treatment of the agent. The main component of the EDS is a stainless steel, cylindrical vessel, which contains the explosion and the subsequent chemical treatment. Extensive modeling and testing have been used to design and qualify the vessel for different applications and conditions. The high explosive (HE) pressure histories and subsequent vessel response (strain histories) are modeled using the analysis codes CTH and LS-DYNA, respectively. Using the model results, a load rating for the EDS is determined based on design guidance provided in the ASME Code, Sect. VIII, Div. 3, Code Case No. 2564. One of the goals is to assess and understand the vessel's capacity in containing a wide variety of detonation sequences at various load levels. Of particular interest are to know the total number of detonation events at the rated load that can be processed inside each vessel, and a maximum load (such as that arising from an upset condition) that can be contained without causing catastrophic failure of the vessel. This paper will discuss application of Code Case 2564 to the stainless steel EDS vessels, including a fatigue analysis using a J-R curve, vessel response to extreme upset loads, and the effects of strain hardening from successive events. Copyright © 2010 by ASME.
Abstract not provided.
American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
The Explosive Destruction System (EDS) was developed by Sandia National Laboratories for the US Army Product Manager for Non-Stockpile Chemical Materiel (PMNSCM) to destroy recovered, explosively configured,chemical munitions. PMNSCM currently has five EDS units that have processed over 850 items. The system uses linear and conical shaped charges to open munitions and attack the burster followed by chemical treatment of the agent. The main component of the EDS is a stainless steel, cylindrical vessel, which contais the explosion and the subsequent chemical treatment. Extensive modeling and testing have been, and continue to be used, to design and qualify the vessel for different applications and conditions. This has included explosive overtests using small, geometrically scaled vessels to study overloads, plastic deformation, and failure limits. Recently the ASME Task Group on Impulsively Loaded Vessels has developed a Code Case under Section VIII Division 3 of the ASME Boiler and Pressure Vessel Code for the design of vessel like the EDS. In this article, a representative EDS subscale vessel is investigated against the ASME Design Codes for vessels subjected to impulsive loads. Topics include strain-based plastic collapse, fatigue and fracture analysis, and leak-before-burst. Vessel design validation is based on model results, where the high explosive (HE) pressure histories and subsequent vessel response (strain histories) are modeled using the analysis codes CTH and LSDYNA, respectively. Copyright © 2008 by ASME.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.