Publications

14 Results

Search results

Jump to search filters

Streamer initiation in volume and surface discharges in atmospheric gases

Proceedings of the 2008 IEEE International Power Modulators and High Voltage Conference, PMHVC

Lehr, Jane; Warne, Larry K.; Jorgenson, Roy E.; Wallace, Z.R.; Hodge, K.C.; Caldwell, Michele C.

It is generally acknowledged that once a highly conductive channel is established between two charged and conducting materials, electrical breakdown is well established and difficult to interrupt. An understanding of the initiation mechanism for electrical breakdown is crucial for devising mitigating methods to avoid catastrophic failures. Both volumetric and surface discharges are of interest. An effort is underway where experiments and theory are being simultaneously developed. The experiment consists of an impedance matched discharge chamber capable of investigating various gases and pressures to ten atmospheres. In addition to current and voltage measurements, a high dynamic range streak camera records streamer velocities. The streamer velocities are particularly valuable for comparison with theory. A streamer model is being developed which includes photo-ionization and particle interactions with an insulating surface. The combined theoretical and experimental effort is aimed at detailed comparisons of streamer development as well as a quantitative understanding of how streamers interact with dielectric surfaces and the resulting effects on breakdown voltage. © 2008 IEEE.

More Details

Lightning vulnerability of fiber-optic cables

Martinez, Leonard E.; Caldwell, Michele C.

One reason to use optical fibers to transmit data is for isolation from unintended electrical energy. Using fiber optics in an application where the fiber cable/system penetrates the aperture of a grounded enclosure serves two purposes: first, it allows for control signals to be transmitted where they are required, and second, the insulating properties of the fiber system help to electrically isolate the fiber terminations on the inside of the grounded enclosure. A fundamental question is whether fiber optic cables can allow electrical energy to pass through a grounded enclosure, with a lightning strike representing an extreme but very important case. A DC test bed capable of producing voltages up to 200 kV was used to characterize electrical properties of a variety of fiber optic cable samples. Leakage current in the samples were measured with a micro-Ammeter. In addition to the leakage current measurements, samples were also tested to DC voltage breakdown. After the fiber optic cables samples were tested with DC methods, they were tested under representative lightning conditions at the Sandia Lightning Simulator (SLS). Simulated lightning currents of 30 kA and 200 kA were selected for this test series. This paper documents measurement methods and test results for DC high voltage and simulated lightning tests performed at the Sandia Lightning Simulator on fiber optic cables. The tests performed at the SLS evaluated whether electrical energy can be conducted inside or along the surface of a fiber optic cable into a grounded enclosure under representative lightning conditions.

More Details

Electromagnetic test facilities at Sandia National Laboratories

Conference Record - IEEE Instrumentation and Measurement Technology Conference

Caldwell, Michele C.; Higgins, Matthew B.

Described below are major electromagnetic test facilities at Sandia National Laboratories; each has undergone recent upgrades. This paper will discuss each facility, their uses, and upgrades pertaining to the facilities performance and diagnostic capabilities. The facilities discussed here are the Sandia Lightning Simulator, the Electromagnetic Environments Simulator, the Mode-Stirred Chamber, and Anechoic Chamber. Sandia's expertise in electromagnetics also extends to theoretical analysis and modeling, which can be done in conjunction with tests or experiments. © 2005 IEEE.

More Details

The Sandia Lightning Simulator Recommissioning and upgrades

Caldwell, Michele C.; Martinez, Leonard E.

The Sandia lightning simulator at Sandia National Laboratories can provide up to 200 kA for a simulated single lightning stroke, 100 kA for a subsequent stroke, and hundreds of Amperes of continuing current. It has recently been recommissioned after a decade of inactivity and the single-stroke capability demonstrated. The simulator capabilities, basic design components, upgrades, and diagnostic capabilities are discussed in this paper.

More Details

The Sandia Lightning Simulator

Caldwell, Michele C.; Martinez, Leonard E.

The Sandia Lightning Simulator at Sandia National Laboratories can provide up to 200 kA for a simulated single lightning stroke, 100 kA for a subsequent stroke, and hundreds of Amperes of continuing current. It has recently been recommissioned after a decade of inactivity and the single-stroke capability demonstrated. The simulator capabilities, basic design components, upgrades, and diagnostic capabilities are discussed in this paper.

More Details
14 Results
14 Results