The performance of a series connected photovoltaic array is limited by the photocell that is illuminated the least. This paper quantifies the effects of single-mode and multi-mode illumination and discusses the design parameters.
A firing set capable of charging a 0.05 μF capacitor to 1.7 kV is constructed using a 2.5 mm diameter Series Connected Photovoltaic Array (SCPA) in lieu of a transformer as the method of high voltage generation. The source of illumination is a fiber coupled 3 W 808 nm laser diode. This paper discusses the performance and PSpice modeling of an SCPA used in a firing set application.
The optical transfer of power is becoming important for military and industrial applications. The powering of electrical circuitry, sensors and actuators over optical fiber offers immunity from RF, EMI, voltage breakdown, lightning and high voltage hazards. Optical power transfer is being employed in industries such as electric power, communications, remote sensing, and aerospace. In this paper we address issues associated with the illumination of Series Connected Photovoltaic Arrays (SCPA). SCPAs are extremely sensitive to the uniformity of illumination. The performance of a photovoltaic array is dominated by the least illuminated cell. We introduce an analytical model that predicts the performance of a photovoltaic array for an arbitrary illumination. Experimental data on array performance is presented, and general issues associated with the problem of producing uniform illumination are discussed.
Airborne synthetic aperture radar (SAR) imaging systems have reached a degree of accuracy and sophistication that requires the validity of the free-space approximation for radio-wave propagation to be questioned. Based on the thin-lens approximation, a closed-form model for the focal length of a gravity wave-modulated refractive-index interface in the lower troposphere is developed. The model corroborates the suggestion that mesoscale, quasi-deterministic variations of the clear-air radio refractive-index field can cause diffraction patterns on the ground that are consistent with reflectivity artifacts occasionally seen in SAR images, particularly in those collected at long ranges, short wavelengths, and small grazing angles.
Applications requiring injection of a high-power multimode laser into multiple fibers with equal energies, or specific energy ratios, provide unique design challenges. As with most all systems, engineering trades must balance competing requirements to obtain an optimal overall design. This is particularly true when fabrication issues are considered in the design process. A few of these competing design requirements are discussed in this conceptually simple system. This fiber injection system consists of three components; a refractive beam homogenizer, a diffractive beamsplitter, and a fiber array. We show the design process, starting with first-order design, for an example fiber injection system that couples a high-power YAG laser into seven fibers. Design goals include high efficiency, good beamsplitting uniformity, compact overall size, maximum mode filling of the fibers, and low cost of fabrication and assembly.
In many applications, the ability to monitor the output of a capacitive discharge circuit is imperative to ensuring the reliability and accuracy of the unit. This monitoring is commonly accomplished with the use of a Current Viewing Transformer (CVT). In order to calibrate the CVT, the circuit is assembled with a Current Viewing Transformer (CVR) in addition to the CVT and the peak outputs compared. However, difficulties encountered with the use of CVRs make it desirable to eliminate the use of the CVR from the calibration process. This report describes a method for determining the calibration factor between the current throughput and the CVT voltage output in a capacitive discharge unit from the CVT ringdown data and values of initial voltage and capacitance of the circuit. Previous linear RLC fitting work for determining R, L, and C is adapted to return values of R, L, and the calibration factor, k. Separate solutions for underdamped and overdamped cases are presented and implemented on real circuit data using MathCad software with positive results. This technique may also offer a unique approach to self calibration of current measuring devices.
We present a technique for determining non-linear resistances, capacitances, and inductances from ring down data in a non-linear RLC circuit. Although the governing differential equations are non-linear, we are able to solve this problem using linear least squares without doing any sort of non-linear iteration.
Imaging systems such as Synthetic Aperture Radar collect band-limited data from which an image of a target scene is rendered. The band-limited nature of the data generates sidelobes, or ''spilled energy'' most evident in the neighborhood of bright point-like objects. It is generally considered desirable to minimize these sidelobes, even at the expense of some generally small increase in system bandwidth. This is accomplished by shaping the spectrum with window functions prior to inversion or transformation into an image. A window function that minimizes sidelobe energy can be constructed based on prolate spheroidal wave functions. A parametric design procedure allows doing so even with constraints on allowable increases in system bandwidth. This approach is extended to accommodate spectral notches or holes, although the guaranteed minimum sidelobe energy can be quite high in this case. Interestingly, for a fixed bandwidth, the minimum-mean-squared-error image rendering of a target scene is achieved with no windowing at all (rectangular or boxcar window).
Superresolution concepts offer the potential of resolution beyond the classical limit. This great promise has not generally been realized. In this study we investigate the potential application of superresolution concepts to synthetic aperture radar. The analytical basis for superresolution theory is discussed. In a previous report the application of the concept to synthetic aperture radar was investigated as an operator inversion problem. Generally, the operator inversion problem is ill posed. This work treats the problem from the standpoint of regularization. Both the operator inversion approach and the regularization approach show that the ability to superresolve SAR imagery is severely limited by system noise.
Superresolution concepts offer the potential of resolution beyond the classical limit. This great promise has not generally been realized. In this study we investigate the potential application of superresolution concepts to synthetic aperture radar. The analytical basis for superresolution theory is discussed. The application of the concept to synthetic aperture radar is investigated as an operator inversion problem. Generally, the operator inversion problem is ill posed. A criterion for judging superresolution processing of an image is presented.
The authors have discussed the three factors that they believe are the most important in determining the difficulty of a beam shaping problem: scaling, smoothness, and coherence. The arguments have been almost completely based on considering how these factors influence beam shaping lenses that were designed using geometrical optics. However, they believe that these factors control the difficulty of beam shaping problems even if one does not base ones design strategy on geometrical optics. For example, they have shown that a lens designed using geometrical optics will not work well unless {beta} is large. However, they have also shown that if {beta} is small the uncertainty principle shows that it is impossible to do a good job of beam shaping no matter how one designs ones lens.
Industrial, military, medical, and research and development applications of lasers frequently require a beam with a specified irradiance distribution in some plane. A common requirement is a laser profile that is uniform over some cross-section. Such applications include laser/material processing, laser material interaction studies, fiber injection systems, optical data/image processing, lithography, medical applications, and military applications. Laser beam shaping techniques can be divided in to three areas: apertured beams, field mappers, and multi-aperture beam integrators. An uncertainty relation exists for laser beam shaping that puts constraints on system design. In this paper we review the basics of laser beam shaping and present applications and limitations of various techniques.
Injection of high power, multi-mode laser profiles into a fiber optic delivery system requires controlling a number of injection parameters to maximize throughput and minimize concerns for optical damage both at the entrance and exit faces of the fiber optic. A simple method for simultaneously achieving a compact fiber injection geometry and control of these injection parameters, independent of the input source characteristics, is provided by a refractive lenslet array and simple injection lens configuration. Design criteria together with analytical and experimental results for the refractive lenslet array and short focal length injection lens are presented. This arrangement provides a uniform spatial intensity distribution at the fiber injection plane to a large degree independent of the source mode structure, spatial profile, divergence, size, and/or alignment to the injection system. This technique has application to a number of laser systems where uniform illumination of a target or remote delivery of high peak power is desired.
Microsystems involve several fabrication technologies, but share the common trait of dimensions and motions measured in microns. Small feature sizes and deflections make the detection of microdevice motion particularly difficult. The rapid operating frequencies of many microactuators compound the detection problem. Effective feedback, control, and performance measurement of microactuators thus become problematic. These measurements are particularly important, however, due to the developmental nature of many microsystem technologies. Wear, lifetime issues, and optimized drive signals, for example, are poorly understood for many actuation devices. As microactuators move out of the development stage and begin to perform work on external assemblies and environments, the various load conditions will also come into account. Since microactuators involve small masses and inertias, effective driving of external loads may require feedback-based control of the microdevice. Optical sensing technologies offer solutions to these problems of sensor motion, microactuator analysis during the development process, and integrated feedback for microactuators driving external loads. Optical methods also end themselves to the effectively 1D nature of many microsystem motions, limiting the required signal analysis to practical levels that support real-time measurement and control. This paper describes several optical techniques for sensing motion, performance, and feedback data, some of which can integrated with the microsystems themselves. For microactuators, experimental results indicate that real-time performance measurements are particularly revealing for understanding device motion and response. For microsensors, experimental result are also presented for interpreting motion using external and integrated optical techniques.
Understanding the parameters that affect the performance of milliscale and microscale actuators is essential to the development of optimized designs and fabrication processes, as well as the qualification of devices for commercial applications. This paper discusses the development of optical techniques for motion measurements of LIGA fabricated milliengines. LIGA processing permits the fabrication of precision millimeter-sized machine elements that cannot be fabricated by conventional miniature machining techniques because of their small feature sizes. In addition, tolerances of 1 part in 103 to 104 may be maintained in millimeter sized components with this processing technique. Optical techniques offer a convenient means for measuring long term statistical performance data and transient responses needed to optimize designs and manufacturing techniques. Optical techniques can also be used to provide feedback signals needed for control and sensing of the state of the machine. Optical probe concepts and experimental data obtained using a milliengine developed at Sandia National Laboratories are presented.
Understanding the mechanisms that impact the performance of Microelectromechanical Systems (MEMS) is essential to the development of optimized designs and fabrication processes, as well as the qualification of devices for commercial applications. Silicon micromachines include engines that consist of orthogonally oriented linear comb drive actuators mechanically connected to a rotating gear. These gears are as small as 50 {mu}m in diameter and can be driven at rotation rates exceeding 300,000 rpm. Optical techniques offer the potential for measuring long term statistical performance data and transient responses needed to optimize designs and manufacturing techniques. We describe the development of Micromachine Optical Probe (MOP) technology for the evaluation of micromachine performance. The MOP approach is based on the detection of optical signals scattered by the gear teeth or other physical structures. We present experimental results obtained with a prototype optical probe and micromachines developed at Sandia National Laboratories.
Correlation integrals have played a central role in optical pattern recognition. The success of correlation, however, has been limited. What is needed is a mathematical operation more complex than correlation. Suitably complex operations are the functionals defined on the Hilbert space of Lebesgue square integrable functions. Correlation is a linear functional of a parameter. In this paper, we develop a representation of functionals in terms of inner products or equivalently correlation functions. We also discuss the role of functionals in neutral networks. Having established a broad relation of correlation to pattern recognition, we discuss the computation of correlation functions using acousto-optics.
In this paper, we review correlation filters as an approach to pattern recognition with a special emphasis on the consequences of normalizing the correlation to achieve intensity invariance. Intensity invariance is effected using the Cauchy-Schwarz inequality to normalize the correlation integral. We discuss the implications of this criterion for the application of correlation filters to the pattern recognition problem. It is shown that normalized phase-only and synthetic discriminate functions do not provide the recognition/discrimination obtained with the classical matched filter. 34 refs., 5 figs.