An Approximate Turbulent Pressure Fluctuation Frequency Spectra for a Finite Supersonic Plate
Abstract not provided.
Abstract not provided.
Here we discuss an improved Corcos (Corcos (1963), (1963)) style cross spectral density utilizing zero pressure gradient, supersonic (Beresh et. al. (2013)) data sets. Using the connection between narrow band measurements with broadband cross-spectral density, i.e. Γ(ξ ,η ,ω )= Φ (ω) A(ωη/U )exp (-i ωξ/U) we focus on estimating coherence expressions of the form: A (ξω nb/U) and B (ηω nb/ U) where ωnb denotes the narrow band frequency, i.e. the band center frequency value and ξ and η are sensors spacing in streamwise/longitudinal and cross-stream/lateral directions, respectively. A methodology to estimate the parameters which retains the Corcos exponential functional form, A(ξω/U)=exp(-klat ηω/U) but identifies new parameters (constants) consistent with the Beresh et. al. data sets is discussed. The Corcos result requires that the data be properly explained by self-similar variable: ξω/U and ηω/U. The longitudinal (streamwise) variable ξω/U tends to provide a better data collapse, while, consistent with the literature the lateral ηω/U is only successful for higher band center frequencies. Assuming the similarity variables provide a useful description of the data, the longitudinal coherence decay constant result using the Beresh et. al. data sets yields a value for the longitudinal constant klong≈0.36-0.28 that is approximately 3x larger than the “traditional” (low speed, large Reynolds number and zero pressure gradient) of klong≈0.11. We suggest that the most likely reason that the Beresh et. al. data sets incur increased longitudinal decay which results in reduced coherence lengths is due to wall shear induced compression causing an adverse pressure gradient. Focusing on the higher band center frequency measurements where the frequency dependent similarity variables are applicable, the lateral or transverse coherence decay constant klat≈0.7 is consistent with the “traditional” (low speed, large Reynolds number and zero pressure gradient). It should be noted, that the longitudinal/streamwise coherence decay deviates from the value observed by other researchers while the lateral/ cross-stream value is consistent has been observed by other researchers. We believe that while the measurements used to obtain new decay constant estimates are from internal wind tunnel tests, they likely provide a useful estimate expected reentry flow behavior and are therefore recommended for use. These data could also be useful in determining the uncertainty of correlation length for a uncertainty quantification (UQ) analysis.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Spacecraft and Rockets
A subscale experiment has been constructed using fins mounted on one wall of a transonic wind tunnel to investigate the influence of fin trailing vortices upon downstream control surfaces. Data were collected using a fin balance instrumenting the downstream fin to measure the aerodynamic forces of the interaction, combined with stereoscopic particle image velocimetry to determine vortex properties. The fin balance data show that the response of the downstream fin essentially is shifted from the baseline single-fin data dependent upon the angle of attack of the upstream fin. Freestream Mach number and the spacing between fins have secondary effects. The velocimetry shows the increase in vortex strength with upstream fin angle of attack, but no variation with Mach number can be discerned in the normalized velocity data. Correlations between the force data and the velocimetry indicate that the interaction is fundamentally a result of an angle of attack superposed upon the downstream fin by the vortex shed from the upstream fin tip. The Mach number influence arises from differing vortex lift on the leading edge of the downstream fin even when the impinging vortex is Mach invariant. Copyright Clearance Center, Inc.
Journal of Spacecraft and Rockets
A subscale experiment has been constructed using fins mounted on one wall of a transonic wind tunnel to investigate the influence of fin trailing vortices upon downstream control surfaces. Data were collected using a fin balance instrumenting the downstream fin to measure the aerodynamic forces of the interaction, combined with stereoscopic particle image velocimetry to determine vortex properties. The fin balance data show that the response of the downstream fin essentially is shifted from the baseline single-fin data dependent upon the angle of attack of the upstream fin. Freestream Mach number and the spacing between fins have secondary effects. The velocimetry shows the increase in vortex strength with upstream fin angle of attack, but no variation with Mach number can be discerned in the normalized velocity data. Correlations between the force data and the velocimetry indicate that the interaction is fundamentally a result of an angle of attack superposed upon the downstream fin by the vortex shed from the upstream fin tip. The Mach number influence arises from differing vortex lift on the leading edge of the downstream fin even when the impinging vortex is Mach invariant. Copyright Clearance Center, Inc.
46th AIAA Aerospace Sciences Meeting and Exhibit
Force and moment measurements have been made on an instrumented subscale fin model at transonic speeds in Sandia's Trisonic Wind Tunnel to ascertain the effects of Mach number and angle of attack on the interaction of a trailing vortex with a downstream control surface. Components of normal force, bending moment, and hinge moment were measured on an instrumented fin downstream of an identical fin at Mach numbers between 0.85 and 1.24, and combinations of angles of attack between -5° and 10° for both fins. The primary influence of upstream fin deflection is to shift the downstream fin's forces in a direction consistent with the vortex-induced angle of attack on the downstream fin. Secondary non-linear effects of vortex lift were found to increase the slopes of normal force and bending moment coefficients when plotted versus fin deflection angle. This phenomenon was dependent upon Mach number and the angles of attack of both fins. The hinge moment coefficient was also influenced by the vortex lift as the center of pressure was pushed aft with increased Mach number and total angle of attack.
Abstract not provided.
Abstract not provided.
46th AIAA Aerospace Sciences Meeting and Exhibit
A sub-scale experiment has been constructed using fins mounted on one wall of a transonic wind tunnel to investigate the influence of fin trailing vortices upon downstream control surfaces. Data are collected using a fin balance instrumenting the downstream fin to measure the aerodynamic forces of the interaction, combined with stereoscopic Particle Image Velocimetry to determine vortex properties. The fin balance data show that the response of the downstream fin essentially is shifted from the baseline single-fin data dependent upon the angle of attack of the upstream fin. Freestream Mach number and the spacing between fins have secondary effects. The velocimetry shows that the vortex strength increases markedly with upstream fin angle of attack, though even an uncanted fin generates a noticeable wake. No variation with Mach number can be discerned in the normalized velocity data. Correlations between the force data and the velocimetry suggest that the interaction is fundamentally a result of an angle of attack superposed upon the downstream fin by the vortex shed from the upstream fin tip. The Mach number influence arises from differing vortex lift on the leading edge of the downstream fin even when the impinging vortex is Mach invariant.
Collection of Technical Papers - 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference
A three-component balance system has been developed and implemented to measure the forces and moments on a sub-scale missile fin model interacting with the wake and shed vortex from an upstream fin. Measurements were made from Mach 0.5 - 0.8 with both the upstream and downstream fins pitched between -5° and 10° angle of attack. The results show that the downstream fin's forces and moments are shifted from the baseline single fin values dependent on the angle of attack of the upstream fin. Mach Number had only a secondary effect and its influence was found to grow stronger as the angles of attack of the upstream and downstream fins diverged.
ICIASF Record, International Congress on Instrumentation in Aerospace Simulation Facilities
A sub-scale experiment has been constructed using fins mounted on one wall of a transonic wind tunnel to investigate the influence of fin tip vortices upon downstream control surfaces. Data are collected using a fin balance mounted on the downstream fin to measure the aerodynamic forces of the interaction, combined with stereoscopic Particle Image Velocimetry to measure vortex properties. The fin balance data show that the response of the downstream fin essentially is shifted from the baseline single-fin data dependent upon the angle of attack of the upstream fin. Freestream Mach number and the spacing between fins have secondary effects. The velocimetry shows that the vortex strength increases markedly with upstream fin angle of attack, though even an uncanted fin generates a noticeable wake. No Mach number effect can be discerned in the normalized data, but measurements taken progressively further from the fin trailing edge show the decay in vortex strength with downstream distance. Correlations between the force data and the velocimetry suggest that the interaction is fundamentally a result of an angle of attack induced upon the downstream fin by the vortex shed from the upstream fin tip. © 2007 IEEE.
Abstract not provided.