Publications

Results 1–25 of 60
Skip to search filters

At-Speed Defect Localization by Combining Laser Scanning Microscopy and Power Spectrum Analysis

IEEE International Reliability Physics Symposium Proceedings

Miller, Mary A.; Cole, Edward I.; Kraus, Garth K.; Robertson, Perry J.

The defect detection capabilities of Power Spectrum Analysis (PSA) [1] have been successfully combined with local laser heating to isolate defective circuitry in a high-speed Si Phase Locked Loop (PLL). The defective operation resulted in missed counts when operating at multi-GHz speeds and elevated temperatures. By monitoring PSA signals at a specific frequency through zero-spanning and scanning the suspect device with a heating laser (1340 nm wavelength), the area(s) causing failure were localized. PSA circumvents the need for a rapid pass/fail detector like that used for Soft Defect Localization (SDL) [2] or Laser-Assisted Defect Analysis (LADA) [3] and converts the at-speed failure to a DC signature. The experimental setup for image acquisition and examples demonstrating utility are described.

More Details

Understanding Photon / Free Carrier Interaction in LVP Signals on Ultra-Thin Silicon ICs

Beutler, Joshua; Cole, Edward I.; Smith, Norman F.; Clement, John J.; Friedman, Caitlin R.

This project investigated a recently patented Sandia technology known as visible light Laser Voltage Probing (LVP). In this effort we carefully prepared well understood and characterized samples for testing. These samples were then operated across a range of configurations to minimize the possibility of superposition of multiple photon carrier interactions as data was taken with conventional and visible light LVP systems. Data consisted of LVP waveforms and Laser Voltage Images (LVI). Visible light (633 nm) LVP data was compared against 1319 nm and 1064 nm conventional LVP data to better understand the similarities and differences in mechanisms for all wavelengths of light investigated. The full text can be obtained by reaching the project manager, Ed Cole or the Cyber IA lead, Justin Ford.

More Details

Failure analysis and process verification of high density copper ICs used in multi-chip modules (MCM)

Conference Proceedings from the International Symposium for Testing and Failure Analysis

Walraven, J.A.; Jenkins, Mark W.; Simmons, Tuyet N.; Levy, James E.; Jensen, Sara E.; Jones, Adam J.; Edwards, Eric E.; Banz, James A.; Cole, Edward I.

Manufacturing of integrated circuits (ICs) using a split foundry process expands design space in IC fabrication by employing unique capabilities of multiple foundries and provides added security for IC designers [1] Defect localization and root cause analysis is critical to failure identification and implementation of corrective actions. In addition to split-foundry fabrication, the device addressed in this publication is .comprised of 8 metal layers, aluminum test pads, and tungsten thru-silicon vias (TSVs) making the circuit area > 68% metal. This manuscript addresses the failure analysis efforts involved in root cause analysis, failure analysis findings, and the corrective actions implemented to eliminate these failure mechanisms from occurring in future product.

More Details

Power spectrum analysis (PSA)

Conference Proceedings from the International Symposium for Testing and Failure Analysis

Tangyunyong, Paiboon T.; Cole, Edward I.; Loubriel, Guillermo M.; Beutler, Joshua; Udoni, Darlene M.; Paskaleva, Biliana S.; Buchheit, Thomas E.

We present a new, non-destructive electrical technique, Power Spectrum Analysis (PSA). PSA as described here uses off-normal biasing, an unconventional way of powering microelectronics devices. PSA with off-normal biasing can be used to detect subtle differences between microelectronic devices. These differences, in many cases, cannot be detected by conventional electrical testing. In this paper, we highlight PSA applications related to aging and counterfeit detection.

More Details

Electronic forensic techniques for manufacturer attribution

Proceedings of the 2016 IEEE International Symposium on Hardware Oriented Security and Trust, HOST 2016

Helinski, Ryan H.; Cole, Edward I.; Robertson, Gideon R.; Woodbridge, Jonathan; Pierson, Lyndon G.

The microelectronics industry seeks screening tools that can be used to verify the origin of and track integrated circuits (ICs) throughout their lifecycle. Embedded circuits that measure process variation of an IC are well known. This paper adds to previous work using these circuits for studying manufacturer characteristics on final product ICs, particularly for the purpose of developing and verifying a signature for a microelectronics manufacturing facility (fab). We present the design, measurements and analysis of 159 silicon ICs which were built as a proof of concept for this purpose. 80 copies of our proof of concept IC were built at one fab, and 80 more copies were built across two lots at a second fab. Using these ICs, our prototype circuits allowed us to distinguish these two fabs with up to 98.7% accuracy and also distinguish the two lots from the second fab with up to 98.8% accuracy.

More Details

Characterization of electrically-active defects in ultraviolet light-emitting diodes with laser-based failure analysis techniques

Journal of Applied Physics

Miller, Mary A.; Tangyunyong, Paiboon T.; Cole, Edward I.

Laser-based failure analysis techniques demonstrate the ability to quickly and non-intrusively screen deep ultraviolet light-emitting diodes (LEDs) for electrically-active defects. In particular, two laser-based techniques, light-induced voltage alteration and thermally-induced voltage alteration, generate applied voltage maps (AVMs) that provide information on electrically-active defect behavior including turn-on bias, density, and spatial location. Here, multiple commercial LEDs were examined and found to have dark defect signals in the AVM indicating a site of reduced resistance or leakage through the diode. The existence of the dark defect signals in the AVM correlates strongly with an increased forward-bias leakage current. This increased leakage is not present in devices without AVM signals. Transmission electron microscopy analysis of a dark defect signal site revealed a dislocation cluster through the pn junction. The cluster included an open core dislocation. Even though LEDs with few dark AVM defect signals did not correlate strongly with power loss, direct association between increased open core dislocation densities and reduced LED device performance has been presented elsewhere [M. W. Moseley et al., J. Appl. Phys. 117, 095301 (2015)].

More Details

Defect localization, characterization and reliability assessment in emerging photovoltaic devices

Cruz-Campa, Jose L.; Haase, Gad S.; Cole, Edward I.; Tangyunyong, Paiboon T.; Okandan, Murat O.; Nielson, Gregory N.

Microsystems-enabled photovoltaics (MEPV) can potentially meet increasing demands for light-weight, portable, photovoltaic solutions with high power density and efficiency. The study in this report examines failure analysis techniques to perform defect localization and evaluate MEPV modules. CMOS failure analysis techniques, including electroluminescence, light-induced voltage alteration, thermally-induced voltage alteration, optical beam induced current, and Seabeck effect imaging were successfully adapted to characterize MEPV modules. The relative advantages of each approach are reported. In addition, the effects of exposure to reverse bias and light stress are explored. MEPV was found to have good resistance to both kinds of stressors. The results form a basis for further development of failure analysis techniques for MEPVs of different materials systems or multijunction MEPVs. The incorporation of additional stress factors could be used to develop a reliability model to generate lifetime predictions for MEPVs as well as uncover opportunities for future design improvements.

More Details

Visible light LVP on ultra-thinned substrates

Conference Proceedings from the International Symposium for Testing and Failure Analysis

Beutler, Joshua; Clement, John J.; Miller, Mary A.; Stevens, Jeffrey S.; Cole, Edward I.

Visible light laser voltage probing (LVP) for improved backside optical spatial resolution is demonstrated on ultra-thinned samples. A prototype system for data acquisition, a method to produce ultra-thinned SOI samples, and LVP signal, imaging, and waveform acquisition are described on early and advanced SOI technology nodes. Spatial resolution and signal comparison with conventional, infrared LVP analysis is discussed.

More Details

Failure analysis techniques for microsystems-enabled photovoltaics

IEEE Journal of Photovoltaics

Yang, Benjamin B.; Cruz-Campa, Jose L.; Haase, Gad S.; Cole, Edward I.; Tangyunyong, Paiboon T.; Resnick, Paul J.; Kilgo, Alice C.; Okandan, Murat O.; Nielson, Gregory N.

Microsystems-enabled photovoltaics (MEPV) has great potential to meet the increasing demands for light-weight, photovoltaic solutions with high power density and efficiency. This paper describes effective failure analysis techniques to localize and characterize nonfunctional or underperforming MEPV cells. The defect localization methods such as electroluminescence under forward and reverse bias, as well as optical beam induced current using wavelengths above and below the device band gap, are presented. The current results also show that the MEPV has good resilience against degradation caused by reverse bias stresses. © 2013 IEEE.

More Details
Results 1–25 of 60
Results 1–25 of 60