Publications

13 Results

Search results

Jump to search filters

Achieving High-Quality Results Through Operational Excellence Performing Work at Sandia Addendum One

Laros, James H.; Hobbs, John W.; Weinbrecht, Edward A.

Sandia’s approach to achieve and sustain operational excellence includes the routine application of Plan-Do-Check-Act (P-D-C-A) quality principles and defect prevention methodologies to our work. To sustain operational excellence, we need to be mindful of factors that could prevent success, address them before they do, and continue to improve all facets of our work. The mindful approach used by organizations that have achieved operational excellence includes use of a questioning attitude coupled with critical thinking throughout their workflows, and the application of five key principles: (1) a preoccupation with failure, (2) reluctance to oversimplify, (3) sensitivity to operations, (4) commitment to resilience, and (5) appropriate deference to expertise.

More Details

The refurbished Z facility : capabilities and recent experiments

Matzen, M.K.; Long, Finis W.; McKee, George R.; Mehlhorn, Thomas A.; Schneider, Larry X.; Struve, Kenneth W.; Stygar, William A.; Weinbrecht, Edward A.; Atherton, B.W.; Cuneo, M.E.; Donovan, Guy L.; Hall, Clint A.; Herrmann, Mark H.; Kiefer, Mark L.; Leeper, Ramon J.; Leifeste, Gordon T.

The Z Refurbishment Project was completed in September 2007. Prior to the shutdown of the Z facility in July 2006 to install the new hardware, it provided currents of {le} 20 MA to produce energetic, intense X-ray sources ({approx} 1.6 MJ, > 200 TW) for performing high energy density science experiments and to produce high magnetic fields and pressures for performing dynamic material property experiments. The refurbishment project doubled the stored energy within the existing tank structure and replaced older components with modern, conventional technology and systems that were designed to drive both short-pulse Z-pinch implosions and long-pulse dynamic material property experiments. The project goals were to increase the delivered current for additional performance capability, improve overall precision and pulse shape flexibility for better reproducibility and data quality, and provide the capacity to perform more shots. Experiments over the past year have been devoted to bringing the facility up to full operating capabilities and implementing a refurbished suite of diagnostics. In addition, we have enhanced our X-ray backlighting diagnostics through the addition of a two-frame capability to the Z-Beamlet system and the addition of a high power laser (Z-Petawatt). In this paper, we will summarize the changes made to the Z facility, highlight the new capabilities, and discuss the results of some of the early experiments.

More Details

Summary of the energy efficient, waste-reducing technology assessment conducted for DOE and EPAct 2108

Weinbrecht, Edward A.

The industrial sector is the most complex and diverse segment of the US economy. There are more than 360,000 industrial facilities in the US, using tens of thousands of processes with millions of different pieces of equipment and employing nearly 30 million people to make hundreds of thousands of products. These facilities consume large quantities of raw materials and energy resources every year. Their waste streams, as well as the technology options for preventing them, are very specific not only to individual industries, but even to plants within the same industry that produce similar products. On October 24, 1992, President Bush signed the Energy Policy Act of 1992 (EPAct) into law as Public Law 102-486. Section 2108 of the Act requires the DOE to identify opportunities to demonstrate energy efficient pollution prevention technologies and processes. As a first step in DOE`s response to congress, Sandia National Laboratories lead a fast tracked project to compile information from the open literature, and pilot a process for identifying and prioritizing opportunity areas from industrial and federal experts. Approximately 300 documents were collected and reviewed, and knowledgeable individuals in government, universities, and trade associations were interviewed. A panel of experts from petroleum industry was assembled for the future opportunity assessments pilot These activities were conducted between May and August, 1993. Project background and results are summarized.

More Details

Full report: Assessment and opportunity identification of energy efficient pollution prevention technologies and processes

Weinbrecht, Edward A.

US industry produces about 12 billion tons of waste a year, or two-thirds of the waste generated in the US. The costs of handling and disposing of these wastes are significant, estimated to be between $25 and $43 billion in 1991, and represent an increase of 66% since 1986. US industry also uses about one-third of all energy consumed in the nation, which adds to the environmental burden. Industrial wastes affect the environmental well-being of the nation and, because of their growing costs, the competitive abilities of US industry. As part of a national effort to reduce industrial wastes, the US Congress passed the Energy Policy Act (EPAct, P.L. 102-486). Section 2108, subsections (b) and (c), of EPAct requires the Department of Energy (DOE) to identify opportunities to demonstrate energy efficient pollution prevention technologies and processes; to assess their availability and the energy, environmental, and cost effects of such technologies; and to report the results. Work for this report clearly pointed to two things, that there is insufficient data on wastes and that there is great breadth and diversity in the US industrial sector. This report identifies: information currently available on industrial sector waste streams, opportunities for demonstration of energy efficient pollution prevention technologies in two industries that produce significant amounts of waste--chemicals and petroleum, characteristics of waste reducing and energy saving technologies identifiable in the public literature, and potential barriers to adoption of waste reducing technologies by industry.

More Details

Summary report: Assessment and opportunity identification of energy efficient pollution prevention technologies and processes

Weinbrecht, Edward A.

On October 24, 1992, the President signed the Energy Policy Act of 1992 (EPAct, Public Law 102-486). Section 2108, subsections (b) and (c), of EPAct requires the Department of Energy to identify opportunities to demonstrate energy efficient pollution prevention technologies and processes; to assess the availability and the energy, environmental, and cost effects of such technologies; and to report the results within one year. This report is in response to that requirement. National waste reduction efforts in both the private and public sectors encompass a variety of activities to decrease the amount of wastes that ultimately enter their air, water, and land. DOE`s Office of Industrial Technologies (DOE/OIT) recognized the importance of these efforts and confirmed the federal government`s commitment to waste reduction by establishing the Industrial Waste Program (IWP) in 1990. The program is driven by industry and national needs, and is working on new technologies and information dissemination that industry identifies as vital. The national benefits of new technologies do not accrue to the economy until transferred to industry and incorporated into commercially available processes or products.

More Details
13 Results
13 Results