Publications

19 Results
Skip to search filters

Electromagnetic Radiation (EMR) coupling to complex systems : aperture coupling into canonical cavities in reverberant and anechoic environments and model validation

Higgins, Matthew B.; Charley, Dawna R.

Mode-stirred chamber and anechoic chamber measurements were made on two sets of canonical test objects (cylindrical and rectangular) with varying numbers of thin slot apertures. The shielding effectiveness was compared to determine the level of correction needed to compensate the mode-stirred data to levels commensurate with anechoic data from the same test object.

More Details

Measurement and modeling of transfer functions for lightning coupling into the Sago mine

Higgins, Matthew B.

This report documents measurements and analytical modeling of electromagnetic transfer functions to quantify the ability of cloud-to-ground lightning strokes (including horizontal arc-channel components) to couple electromagnetic energy into the Sago mine located near Buckhannon, WV. Two coupling mechanisms were measured: direct and indirect drive. These transfer functions are then used to predict electric fields within the mine and induced voltages on conductors that were left abandoned in the sealed area of the Sago mine.

More Details

Final report on development of Pulse Arrested Spark Discharge (PASD) for aging aircraft wiring application

Glover, Steven F.; Higgins, Matthew B.; Lockner, Thomas L.; Schneider, Larry X.; Pena, Gary P.

Pulsed Arrested Spark Discharge (PASD) is a Sandia National Laboratories Patented, non-destructive wiring system diagnostic that has been developed to detect defects in aging wiring systems in the commercial aircraft fleet. PASD was previously demonstrated on relatively controlled geometry wiring such as coaxial cables and shielded twisted-pair wiring through a contract with the U.S. navy and is discussed in a Sandia National Laboratories report, SAND2001-3225 ''Pulsed Arrested Spark Discharge (PASD) Diagnostic Technique for the Location of Defects in Aging Wiring Systems''. This report describes an expansion of earlier work by applying the PASD technique to unshielded twisted-pair and discrete wire configurations commonly found in commercial aircraft. This wiring is characterized by higher impedances as well as relatively non-uniform impedance profiles that have been found to be challenging for existing aircraft wiring diagnostics. Under a three year contract let by the Federal Aviation Administration, Interagency Agreement DTFA-03-00X90019, this technology was further developed for application on aging commercial aircraft wiring systems. This report describes results of the FAA program with discussion of previous work conducted under U.S. Department of Defense funding.

More Details

Statistical characterization of multi-conductor cables using large numbers of measurements

Higgins, Matthew B.

Understanding and characterizing the electrical properties of multi-conductor shielded and unshielded cables is an important endeavor for many diverse applications, including airlines, land based communications, nuclear weapons, and any piece of hardware containing multi-conductor cabling. Determining the per unit length capacitance and inductance based on the geometry of the conductors, number of conductors, and characteristics of the shield can prove quite difficult. Relating the inductance and capacitance to shielding effectiveness can be even more difficult. An exceedingly large number of measurements were taken to characterize eight multi-conductor cables, of which four were 3-conductor cables and four were 18-conductor cables. Each set of four cables contained a shielded cable and an unshielded cable with the inner conductors twisted together and a shielded cable and an unshielded cable with the inner conductors not twisted together (or straight). Male LJT connectors were attached on either end of the cable and each cable had a finished length of 22.5 inches. The measurements performed were self and mutual inductance, self and mutual capacitance, and effective height. For the 18 conductor case there ended up being an 18 by 18 element matrix for inductance (with the self inductance terms lying on the diagonal) and an 18 by 18 matrix for capacitance. The effective height of each cable was measured over a frequency range from 220 MHz to 18 GHz in a Mode-Stirred Chamber. The effective height of each conductor of each cable was measured individually and all shorted together, producing 19 frequency responses for each 18 conductor cable. Shielding effectiveness was calculated using the effective heights from the shielded and unshielded cables. The results of these measurements and the statistical analysis of the data will be presented. There will also be a brief presentation of comparison with numerical models.

More Details

Capacitance and effective area of flush monopole probes

Basilio, Lorena I.; Warne, Larry K.; Johnson, William Arthur.; Higgins, Matthew B.; Lehr, J.M.

Approximate formulas are constructed and numerical simulations are carried out for electric field derivative probes that have the form of flush mounted monopoles. Effects such as rounded edges are included. A method is introduced to make results from two-dimensional conformal mapping analyses accurately apply to the three-dimensional axisymmetric probe geometry

More Details

Assessment of the non-destructive nature of PASD on wire insulation integrity

Glover, Steven F.; Glover, Steven F.; Higgins, Matthew B.; Pena, Gary P.; Schneider, Larry X.; Lockner, Thomas L.

The potential of a new cable diagnostic known as Pulse-Arrested Spark Discharge technique (PASD) is being studied. Previous reports have documented the capability of the technique to locate cable failures using a short high voltage pulse. This report will investigate the impact of PASD on the sample under test. In this report, two different energy deposition experiments are discussed. These experiments include the PASD pulse ({approx}6 mJ) and a high energy discharge ({approx}600 mJ) produced from a charged capacitor source. The high energy experiment is used to inflict detectable damage upon the insulators and to make comparisons with the effects of the low energy PASD pulse. Insulator breakdown voltage strength before and after application of the PASD pulse and high energy discharges are compared. Results indicate that the PASD technique does not appear to degrade the breakdown strength of the insulator or to produce visible damage. However, testing of the additional materials, including connector insulators, may be warranted to verify PASDs non-destructive nature across the full spectrum of insulators used in commercial aircraft wiring systems.

More Details
19 Results
19 Results