Re-establishing gas puff radiation sources on the Z generator :
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Journal of Computational Physics.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
A common source of neutrons for calibration and testing is alpha-neutron material, named for the alpha-neutron nuclear reaction that occurs within. This material contains a long-lived alpha-emitter and a lighter target element. When the alpha particle from the emitter is absorbed by the target, neutrons and gamma rays are released. Gamma Detector Response and Analysis Software (GADRAS) includes built-in alpha-neutron source definitions for AcC, AmB, AmBe, AmF, AmLi, CmC, and PuC. In addition, GADRAS users may create their own alpha-neutron sources by placing valid alpha-emitters and target elements in materials within their one-dimensional models (1DModel). GADRAS has the ability to use pre-built alpha-neutron sources for plotting or as trace-sources in 1D models. In addition, if any material (existing or user-defined) specified in a 1D model contains both an alpha emitter in conjunction with a target nuclide, or there is an interface between such materials, then the appropriate neutron-emission rate from the alpha-neutron reaction will be computed. The gamma-emissions from these sources are also computed, but are limited to a subset of nine target nuclides. If a user has experimental data to contribute to the alpha-neutron gamma emission database, it may be added directly or submitted to the GADRAS developers for inclusion. The gadras.exe.config file will be replaced when GADRAS updates are installed, so sending the information to the GADRAS developers is the preferred method for updating the database. This is also preferable because it enables other users to benefit from your efforts.
Abstract not provided.
Abstract not provided.
Proposed for publication in IEEE Transactions on Plasma Science.
Abstract not provided.
Proposed for publication in 5th Special Issue of the IEEE Transactions on Plasma Science Z-Pinch Plasmas.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Advanced Materials.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Nanotechnology.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Security Informatics.
Abstract not provided.
Abstract not provided.
Proposed for publication in IEEE Transactions on Very Large Scale Integration Systems .
Abstract not provided.
Proposed for publication in Physics of Fluids.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review Letters
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Journal of the Electrochemical Society.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Physical Review Letters.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
International Materials Review
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Exascale systems will present considerable fault-tolerance challenges to applications and system software. These systems are expected to suffer several hard and soft errors per day. Unfortunately, many fault-tolerance methods in use, such as rollback recovery, are unsuitable for many expected errors, for example DRAM failures. As a result, applications will need to address these resilience challenges to more effectively utilize future systems. In this paper, we describe work on a cross-layer application/OS framework to handle uncorrected memory errors. We illustrate the use of this framework through its integration with a new fault-tolerant iterative solver within the Trilinos library, and present initial convergence results.
Reliability is of great concern to the scalability of extreme-scale systems. Of particular concern are soft errors in main memory, which are a leading cause of failures on current systems and are predicted to be the leading cause on future systems. While great effort has gone into designing algorithms and applications that can continue to make progress in the presence of these errors without restarting, the most critical software running on a node, the operating system (OS), is currently left relatively unprotected. OS resiliency is of particular importance because, though this software typically represents a small footprint of a compute node's physical memory, recent studies show more memory errors in this region of memory than the remainder of the system. In this paper, we investigate the soft error vulnerability of two operating systems used in current and future high-performance computing systems: Kitten, the lightweight kernel developed at Sandia National Laboratories, and CLE, a high-performance Linux-based operating system developed by Cray. For each of these platforms, we outline major structures and subsystems that are vulnerable to soft errors and describe methods that could be used to reconstruct damaged state. Our results show the Kitten lightweight operating system may be an easier target to harden against memory errors due to its smaller memory footprint, largely deterministic state, and simpler system structure.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Systems Theoretic Process Analysis (STPA) is a powerful new hazard analysis method designed to go beyond traditional safety techniques - such as Fault Tree Analysis (FTA) - that overlook important causes of accidents like flawed requirements, dysfunctional component interactions, and software errors. While proving to be very effective on real systems, no formal structure has been defined for STPA and its application has been ad-hoc with no rigorous procedures or model-based design tools. This report defines a formal mathematical structure underlying STPA and describes a procedure for systematically performing an STPA analysis based on that structure. A method for using the results of the hazard analysis to generate formal safety-critical, model-based system and software requirements is also presented. Techniques to automate both the analysis and the requirements generation are introduced, as well as a method to detect conflicts between the safety and other functional model-based requirements during early development of the system.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Journal of Nuclear Materials.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Modelling and Simulation in Materials Science and Engineering.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Physical Review Letters.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Bioresource Technology.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Optics Express (most likely).
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Journal of Polymer Science Part B, Polymer Physics.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in International Journal for Numerical Methods in Engineering.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Journal of Nuclear Materials.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Journal of Applied Physics.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.
This report proposes potential research priorities for the Department of Energy (DOE) with the intent of improving the licensability of the Sodium Fast Reactor (SFR). In support of this project, five panels were tasked with identifying potential safety-related gaps in available information, data, and models needed to support the licensing of a SFR. The areas examined were sodium technology, accident sequences and initiators, source term characterization, codes and methods, and fuels and materials. It is the intent of this report to utilize a structured and transparent process that incorporates feedback from all interested stakeholders to suggest future funding priorities for the SFR research and development. While numerous gaps were identified, two cross-cutting gaps related to knowledge preservation were agreed upon by all panels and should be addressed in the near future. The first gap is a need to re-evaluate the current procedures for removing the Applied Technology designation from old documents. The second cross-cutting gap is the need for a robust Knowledge Management and Preservation system in all SFR research areas. Closure of these and the other identified gaps will require both a reprioritization of funding within DOE as well as a re-evaluation of existing bureaucratic procedures within the DOE associated with Applied Technology and Knowledge Management.
Abstract not provided.