Publications

Results 5501–5600 of 99,299

Search results

Jump to search filters

Quantitative Assessment for Advanced Reactor Radioisotope Screening Utilizing a Heat Pipe Reactor Inventory

Clavier, Kyle A.; Clayton, Daniel J.; Faucett, Christopher A.

This report documents a method for the quantitative identification of radionuclides of potential interest for accident consequence analysis involving advanced nuclear reactors. Based on previous qualitative assessments of radionuclide inventories for advanced reactors coupled with the review of a radiological inventory developed for a heat pipe reactor, a 1 Ci activity airborne release was calculated for 137 radionuclides using the MACCS 4.1 code suite. Several assumptions regarding release conditions were made and discussed herein. The potential release of a heat pipe reactor inventory was also modeled following the same assumptions. Results provide an estimation of the relative EARLY and CHRONC phase dose contribution from advanced reactor radionuclides and are normalized to doses from equivalent releases of I-131 and Cs-137, respectively. Ultimately, a list of 69 radionuclides with EARLY or CHRONC dose contributions at least 1/100th that of I-131 or Cs-137, respectively – 48 of which are currently considered for LWR consequence analyses – was identified of being of potential importance for analyses involving a heat pipe reactor.

More Details

Modeling Urban Acoustic Noise in the Las Vegas, NV Region

Wynn, Nora C.R.; Dannemann Dugick, Fransiska K.

Ambient infrasound noise in quiet, rural environments has been extensively studied and well-characterized through noise models for several decades. More recently, creating noise models for high-noise rural environments has also become an area of active research. However, far less work has been done to create generalized low-frequency noise models for urban areas. The high ambient noise levels expected in cities and other highly populated areas means that these environments are regarded as poor locations for acoustic sensors, and historically, sensor deployment in urban areas were avoided for this reason. However, there are several advantages to placing sensors in urban environments, including convenience of deployment and maintenance, and increasingly, necessity, as more previously rural areas become populated. This study seeks to characterize trends in low-frequency urban noise by creating a background noise model for Las Vegas, NV, using the Las Vegas Infrasound Array (LVIA): a network of eleven infrasound sensors deployed throughout the city. Data included in this study spans from 2019 to 2021 and provides a largely uninterrupted record of noise levels in the city from 0.1–500 Hz, with only minor discontinuities on individual stations. We organize raw data from the LVIA sensors into hourly power spectral density (PSD) averages for each station and select from these PSDs to create frequency distributions for time periods of interest . These frequency distributions are converted into probability density functions (PDFs), which are then used to evaluate variations in frequency and amplitude over daily to seasonal timescale s. In addition to PDFs, the median, 5th percentile, and 95th percentile amplitude values are calculated across the entire frequency range. This methodology follows a well-established process for noise model creation.

More Details

Computational Response Theory for Dynamics

Steyer, Andrew J.

Quantifying the sensitivity - how a quantity of interest (QoI) varies with respect to a parameter – and response – the representation of a QoI as a function of a parameter - of a computer model of a parametric dynamical system is an important and challenging problem. Traditional methods fail in this context since sensitive dependence on initial conditions implies that the sensitivity and response of a QoI may be ill-conditioned or not well-defined. If a chaotic model has an ergodic attractor, then ergodic averages of QoIs are well-defined quantities and their sensitivity can be used to characterize model sensitivity. The response theorem gives sufficient conditions such that the local forward sensitivity – the derivative with respect to a given parameter - of an ergodic average of a QoI is well-defined. We describe a method based on ergodic and response theory for computing the sensitivity and response of a given QoI with respect to a given parameter in a chaotic model with an ergodic and hyperbolic attractor. This method does not require computation of ensembles of the model with perturbed parameter values. The method is demonstrated and some of the computations are validated on the Lorenz 63 and Lorenz 96 models.

More Details

Deployment of Multifidelity Uncertainty Quantification for Thermal Battery Assessment Part I: Algorithms and Single Cell Results

Eldred, Michael; Adams, Brian M.; Geraci, Gianluca; Portone, Teresa; Ridgway, Elliott M.; Stephens, John A.; Wildey, Timothy

This report documents the results of an FY22 ASC V&V level 2 milestone demonstrating new algorithms for multifidelity uncertainty quantification. Part I of the report describes the algorithms, studies their performance on a simple model problem, and then deploys the methods to a thermal battery example from the open literature. Part II (restricted distribution) applies the multifidelity UQ methods to specific thermal batteries of interest to the NNSA/ASC program.

More Details

Numerical and Experimental Investigations on the Ignition Behavior of OME

Energies

Wiesmann, Frederik; Strauss, Lukas; Riess, Sebastian; Manin, Julien L.; Wan, Kevin; Lauer, Thomas

On the path towards climate-neutral future mobility, the usage of synthetic fuels derived from renewable power sources, so-called e-fuels, will be necessary. Oxygenated e-fuels, which contain oxygen in their chemical structure, not only have the potential to realize a climate-neutral powertrain, but also to burn more cleanly in terms of soot formation. Polyoxymethylene dimethyl ethers (PODE or OMEs) are a frequently discussed representative of such combustibles. However, to operate compression ignition engines with these fuels achieving maximum efficiency and minimum emissions, the physical-chemical behavior of OMEs needs to be understood and quantified. Especially the detailed characterization of physical and chemical properties of the spray is of utmost importance for the optimization of the injection and the mixture formation process. The presented work aimed to develop a comprehensive CFD model to specify the differences between OMEs and dodecane, which served as a reference diesel-like fuel, with regards to spray atomization, mixing and auto-ignition for single- and multi-injection patterns. The simulation results were validated against experimental data from a high-temperature and high-pressure combustion vessel. The sprays’ liquid and vapor phase penetration were measured with Mie-scattering and schlieren-imaging as well as diffuse back illumination and Rayleigh-scattering for both fuels. To characterize the ignition process and the flame propagation, measurements of the OH* chemiluminescence of the flame were carried out. Significant differences in the ignition behavior between OMEs and dodecane could be identified in both experiments and CFD simulations. Liquid penetration as well as flame lift-off length are shown to be consistently longer for OMEs. Zones of high reaction activity differ substantially for the two fuels: Along the spray center axis for OMEs and at the shear boundary layers of fuel and ambient air for dodecane. Additionally, the transient behavior of high temperature reactions for OME is predicted to be much faster.

More Details

Internship Experience

Redhouse, Theala L.

I started my internship in January 2022 but the research on measuring dispersion and loss of 355nm light from a silicon oxide waveguide began in August 2022 which will be the focus of this paper. The motivation of this project is to determine whether it is possible to use pulsed 355nm light in an integrated waveguide within an ion trap chip. To begin this project, light from the 355nm Coherent Paladin laser was coupled into a fiber which will be referred to as the “source fiber.” After coupling into a fiber, loss and dispersion measurements could be performed as this fiber was used to deliver light to each of the experiments which will be covered in detail in the following paragraphs.

More Details

Using ultrasonic attenuation in cortical bone to infer distributions on pore size

Applied Mathematical Modelling

White, Rebekah D.; Alexanderian, A.; Karbalaeisadegh, Y.; Bekele-Maxwell, K.; Banks, H.T.; Talmant, M.; Grimal, Q.; Muller, M.

In this work we infer the underlying distribution on pore radius in human cortical bone samples using ultrasonic attenuation data. We first discuss how to formulate polydisperse attenuation models using a probabilistic approach and the Waterman Truell model for scattering attenuation. We then compare the Independent Scattering Approximation and the higher-order Waterman Truell models’ forward predictions for total attenuation in polydisperse samples. Following this, we formulate an inverse problem under the Prohorov Metric Framework coupled with variational regularization to stabilize this inverse problem. We then use experimental attenuation data taken from human cadaver samples and solve inverse problems resulting in nonparametric estimates of the probability density function on pore radius. We compare these estimates to the “true” microstructure of the bone samples determined via microCT imaging. We find that our methodology allows us to reliably estimate the underlying microstructure of the bone from attenuation data.

More Details

Towards Z-Next: The Integration of Theory, Experiments, and Computational Simulation in a Bayesian Data Assimilation Framework

Maupin, Kathryn A.; Foulk, James W.; Foulk, James W.; Knapp, P.F.; Joseph, V.R.; Wu, C.F.J.; Glinsky, Michael E.; Valaitis, Sonata M.

Making reliable predictions in the presence of uncertainty is critical to high-consequence modeling and simulation activities, such as those encountered at Sandia National Laboratories. Surrogate or reduced-order models are often used to mitigate the expense of performing quality uncertainty analyses with high-fidelity, physics-based codes. However, phenomenological surrogate models do not always adhere to important physics and system properties. This project develops surrogate models that integrate physical theory with experimental data through a maximally-informative framework that accounts for the many uncertainties present in computational modeling problems. Correlations between relevant outputs are preserved through the use of multi-output or co-predictive surrogate models; known physical properties (specifically monotoncity) are also preserved; and unknown physics and phenomena are detected using a causal analysis. By endowing surrogate models with key properties of the physical system being studied, their predictive power is arguably enhanced, allowing for reliable simulations and analyses at a reduced computational cost.

More Details

Optimization of flow in additively manufactured porous columns with graded permeability

AIChE Journal

Salloum, Maher; Robinson, David

Chemical engineering systems often involve a functional porous medium, such as in catalyzed reactive flows, fluid purifiers, and chromatographic separations. Ideally, the flow rates throughout the porous medium are uniform, and all portions of the medium contribute efficiently to its function. The permeability is a property of a porous medium that depends on pore geometry and relates flow rate to pressure drop. Additive manufacturing techniques raise the possibilities that permeability can be arbitrarily specified in three dimensions, and that a broader range of permeabilities can be achieved than by traditional manufacturing methods. Using numerical optimization methods, we show that designs with spatially varying permeability can achieve greater flow uniformity than designs with uniform permeability. We consider geometries involving hemispherical regions that distribute flow, as in many glass chromatography columns. By several measures, significant improvements in flow uniformity can be obtained by modifying permeability only near the inlet and outlet.

More Details

Sensitivity Analysis for Solutions to Heterogeneous Nonlocal Systems. Theoretical and Numerical Studies

Journal of Peridynamics and Nonlocal Modeling

Buczkowski, Nicole E.; Foss, Mikil D.; Parks, Michael L.; Radu, Petronela

The paper presents a collection of results on continuous dependence for solutions to nonlocal problems under perturbations of data and system parameters. The integral operators appearing in the systems capture interactions via heterogeneous kernels that exhibit different types of weak singularities, space dependence, even regions of zero-interaction. The stability results showcase explicit bounds involving the measure of the domain and of the interaction collar size, nonlocal Poincaré constant, and other parameters. In the nonlinear setting, the bounds quantify in different Lp norms the sensitivity of solutions under different nonlinearity profiles. The results are validated by numerical simulations showcasing discontinuous solutions, varying horizons of interactions, and symmetric and heterogeneous kernels.

More Details

Combined Imaging and RNA-Seq on a Microfluidic Platform for Viral Infection Studies

Krishnakumar, Raga; Sjoberg, Kurt C.; Fisher, Anna L.; Doudoukjian, Gloria E.; Webster, Elizabeth R.

The goal of this work was to pioneer a novel, low-overhead protocol for simultaneously assaying cell-surface markers and intracellular gene expression in a single mammalian cell. The purpose of developing such a method is to be able to understand the mechanisms by which pathogens engage with individual mammalian cells, depending on their cell surface proteins, and how both host and pathogen gene expression changes are reflective of these mechanisms. The knowledge gained from such analyses of single cells will ultimately lead to more robust pathogen detection and countermeasures. Our method was aimed at streamlining both the upstream cell sample preparation using microfluidic methods, as well as the actual library making protocol. Specifically, we wanted to implement a random hexamer-based reverse transcription of all RNA within a single cell (as opposed to oligo dT-based which would only capture polyadenylated transcripts), and then use a CRISPR-based method called scDash to deplete ribosomal DNAs (since ribosomal RNAs make up the majority of the RNA in a mammalian cell). After significant troubleshooting, we demonstrate that we are able to prepare cDNA from RNA using the random hexamer primer, and perform the rDNA depletion. We also show that we can visualize individually stained cells, setting up the pipeline for connecting surface markers to RNA-sequencing profiles. Finally, we test a number of devices for various parts of the pipeline, including bead generation, optical barcoding and cell dispensing, and demonstrate that while some of these have potential, more work is needed to optimize this part of the pipeline.

More Details

Fragmentation analysis of a bar with the Lip-field approach

Mechanics of Materials

Stershic, Andrew J.; Moes, Nicolas; Le, Benoit

The Lip-field approach was introduced in Moës and Chevaugeon (2021) as a new way to regularize softening material models. It was tested in 1D quasistatic in Moës and Chevaugeon (2021) and 2D quasistatic in Chevaugeon and Moës (2021): this paper extends it to 1D dynamics, on the challenging problem of dynamic fragmentation. The Lip-field approach formulates the mechanical problem to be solved as an optimization problem, where the incremental potential to be minimized is the non-regularized one. Spurious localization is prevented by imposing a Lipschitz constraint on the damage field. The displacement and damage field at each time step are obtained by a staggered algorithm, that is the displacement field is computed for a fixed damage field, then the damage field is computed for a fixed displacement field. Indeed, these two problems are convex, which is not the case of the global problem where the displacement and damage fields are sought at the same time. The incremental potential is obtained by equivalence with a cohesive zone model, which makes material parameters calibration simple. A non-regularized local damage equivalent to a cohesive zone model is also proposed. It is used as a reference for the Lip-field approach, without the need to implement displacement jumps. These approaches are applied to the brittle fragmentation of a 1D bar with randomly perturbed material properties to accelerate spatial convergence. Both explicit and implicit dynamic implementations are compared. Favorable comparison to several analytical, numerical and experimental references serves to validate the modeling approach.

More Details

2D imaging of absolute methyl concentrations in nanosecond pulsed plasma by photo-fragmentation laser-induced fluorescence

Plasma Sources Science and Technology

Van Den Bekerom, Dirk; Richards, Caleb; Huang, Erxiong; Adamovich, Igor; Frank, Jonathan H.

The methyl radical plays a central role in plasma-assisted hydrocarbon chemistry but is challenging to detect due to its high reactivity and strongly pre-dissociative electronically excited states. We report the development of a photo-fragmentation laser-induced fluorescence (PF-LIF) diagnostic for quantitative 2D imaging of methyl profiles in a plasma. This technique provides temporally and spatially resolved measurements of local methyl distributions, including in near-surface regions that are important for plasma-surface interactions such as plasma-assisted catalysis. The technique relies on photo-dissociation of methyl by the fifth harmonic of a Nd:YAG laser at 212.8 nm to produce CH fragments. These photofragments are then detected with LIF imaging by exciting a transition in the B-X(0, 0) band of CH with a second laser at 390 nm. Fluorescence from the overlapping A-X(0, 0), A-X(1, 1), and B-X(0, 1) bands of CH is detected near 430 nm with the A-state populated by collisional B-A electronic energy transfer. This non-resonant detection scheme enables interrogation close to a surface. The PF-LIF diagnostic is calibrated by producing a known amount of methyl through photo-dissociation of acetone vapor in a calibration gas mixture. We demonstrate PF-LIF imaging of methyl production in methane-containing nanosecond pulsed plasmas impinging on dielectric surfaces. Absolute calibration of the diagnostic is demonstrated in a diffuse, plane-to-plane discharge. Measured profiles show a relatively uniform distribution of up to 30 ppm of methyl. Relative methyl measurements in a filamentary plane-to-plane discharge and a plasma jet reveal highly localized intense production of methyl. The utility of the PF-LIF technique is further demonstrated by combining methyl measurements with formaldehyde LIF imaging to capture spatiotemporal correlations between methyl and formaldehyde, which is an important intermediate species in plasma-assisted oxidative coupling of methane.

More Details

94ND10 Intergranular Phase Analysis and Fabrication

Bishop, Sean R.; Boro, Joseph R.; Jauregui, Luis; Price, Patrick M.; Peretti, Amanda S.; Lowry, Daniel R.; Kammler, Daniel

The composition and phase fraction of the intergranular phase of 94ND10 ceramic is determined and fabricated ex situ. The fraction of each phase is 85.96 vol% Al2O3 bulk phase, 9.46 vol% Mg-rich intergranular phase, 4.36 vol% Ca/Si-rich intergranular phase, and 0.22 vol% voids. The Ca/Si-rich phase consists of 0.628 at% Mg, 12.59 at% Si, 10.24 at% Ca, 17.23 at% Al, and balance O. The Mgrich phase consists of 14.17 at% Mg, 0.066 at% Si, 0.047 at% Ca, 28.69 at% Al, and balance O. XRD of the ex situ intergranular material made by mixed oxides consisting of the above phase and element fractions yielded 92 vol% MgAl2O4 phase and 8 vol% CaAl2Si2O8 phase. The formation of MgAl2O4 phase is consistent with prior XRD of 94ND10, while the CaAl2Si2O8 phase may exist in 94ND10 but at a concentration not readily detected with XRD. The MgAl2O4 and CaAl2Si2O8 phases determined from XRD are expected to have the elemental compositions for the Mg-rich and Ca/Si-rich phases above by cation substitutions (e.g., some Mg substituted for by Ca in the Mg-rich phase) and impurity phases not detectable with XRD.

More Details

Energy Storage for Manufacturing and Industrial Decarbonization (Energy StorM)

Ho, Clifford K.; Rao, Prakash; Iloeje, Nwike; Marschilok, Amy; Liaw, Boryann; Kaur, Sumanjeet; Slaughter, Julie; Hertz, Kristin; Wendt, Lynn; Supekar, Sarang; Montes, Marisa

This report summarizes the needs, challenges, and opportunities associated with carbon-free energy and energy storage for manufacturing and industrial decarbonization. Energy needs and challenges for different manufacturing and industrial sectors (e.g., cement/steel production, chemicals, materials synthesis) are identified. Key issues for industry include the need for large, continuous on-site capacity (tens to hundreds of megawatts), compatibility with existing infrastructure, cost, and safety. Energy storage technologies that can potentially address these needs, which include electrochemical, thermal, and chemical energy storage, are presented along with key challenges, gaps, and integration issues. Analysis tools to value energy storage technologies in the context of manufacturing and industrial decarbonizations are also presented. Material is drawn from the Energy Storage for Manufacturing and Industrial Decarbonization (Energy StorM) Workshop, held February 8 - 9, 2022. The objective was to identify research opportunities and needs for the U.S. Department of Energy as part of its Energy Storage Grand Challenge program.

More Details

Low-synch Gram–Schmidt with delayed reorthogonalization for Krylov solvers

Parallel Computing

Bielich, Daniel; Langou, Julien; Thomas, Stephen; Swirydowicz, Kasia; Yamazaki, Ichitaro; Boman, Erik G.

The parallel strong-scaling of iterative methods is often determined by the number of global reductions at each iteration. Low-synch Gram–Schmidt algorithms are applied here to the Arnoldi algorithm to reduce the number of global reductions and therefore to improve the parallel strong-scaling of iterative solvers for nonsymmetric matrices such as the GMRES and the Krylov–Schur iterative methods. In the Arnoldi context, the QR factorization is “left-looking” and processes one column at a time. Among the methods for generating an orthogonal basis for the Arnoldi algorithm, the classical Gram–Schmidt algorithm, with reorthogonalization (CGS2) requires three global reductions per iteration. A new variant of CGS2 that requires only one reduction per iteration is presented and applied to the Arnoldi algorithm. Delayed CGS2 (DCGS2) employs the minimum number of global reductions per iteration (one) for a one-column at-a-time algorithm. The main idea behind the new algorithm is to group global reductions by rearranging the order of operations. DCGS2 must be carefully integrated into an Arnoldi expansion or a GMRES solver. Numerical stability experiments assess robustness for Krylov–Schur eigenvalue computations. Performance experiments on the ORNL Summit supercomputer then establish the superiority of DCGS2 over CGS2.

More Details

Evaluation of accuracy and convergence of numerical coupling approaches for poroelasticity benchmark problems

Geomechanics for Energy and the Environment

Warren, Maria; Foulk, James W.; Martinez, Mario J.; Kucala, Alec; Yoon, Hongkyu

Accurate modeling of subsurface flow and transport processes is vital as the prevalence of subsurface activities such as carbon sequestration, geothermal recovery, and nuclear waste disposal increases. Computational modeling of these problems leverages poroelasticity theory, which describes coupled fluid flow and mechanical deformation. Although fully coupled monolithic schemes are accurate for coupled problems, they can demand significant computational resources for large problems. In this work, a fixed stress scheme is implemented into the Sandia Sierra Multiphysics toolkit. Two implementation methods, along with the fully coupled method, are verified with one-dimensional (1D) Terzaghi, 2D Mandel, and 3D Cryer sphere benchmark problems. The impact of a range of material parameters and convergence tolerances on numerical accuracy and efficiency was evaluated. Overall the fixed stress schemes achieved acceptable numerical accuracy and efficiency compared to the fully coupled scheme. However, the accuracy of the fixed stress scheme tends to decrease with low permeable cases, requiring the finer tolerance to achieve a desired numerical accuracy. For the fully coupled scheme, high numerical accuracy was observed in most of cases except a low permeability case where an order of magnitude finer tolerance was required for accurate results. Finally, a two-layer Terzaghi problem and an injection–production well system were used to demonstrate the applicability of findings from the benchmark problems for more realistic conditions over a range of permeability. Simulation results suggest that the fixed stress scheme provides accurate solutions for all cases considered with the proper adjustment of the tolerance. This work clearly demonstrates the robustness of the fixed stress scheme for coupled poroelastic problems, while a cautious selection of numerical tolerance may be required under certain conditions with low permeable materials.

More Details

Inspecta Annual Technical Report

Smartt, Heidi A.; Coram, Jamie L.; Dorawa, Sydney; Foulk, James W.; Honnold, Philip; Kakish, Zahi; Pickett, Chris; Shoman, Nathan; Spence, Katherine

Sandia National Laboratories (SNL) is designing and developing an Artificial Intelligence (AI)-enabled smart digital assistant (SDA), Inspecta (International Nuclear Safeguards Personal Examination and Containment Tracking Assistant). The goal is to provide inspectors an in-field digital assistant that can perform tasks identified as tedious, challenging, or prone to human error. During 2021, we defined the requirements for Inspecta based on reviews of International Atomic Energy Agency (IAEA) publications and interviews with former IAEA inspectors. We then mapped the requirements to current commercial or open-source technical capabilities to provide a development path for an initial Inspecta prototype while highlighting potential research and development tasks. We selected a highimpact inspection task that could be performed by an early Inspecta prototype and are developing the initial architecture, including hardware platform. This paper describes the methodology for selecting an initial task scenario, the first set of Inspecta skills needed to assist with that task scenario and finally the design and development of Inspecta’s architecture and platform.

More Details

Stress Intensity Thresholds for Development of Reliable Brittle Materials

Rimsza, Jessica; Strong, Kevin T.; Buche, Michael R.; Jones, Reese E.; Nakakura, Craig Y.; Weyrauch, Noah; Brow, Richard; Duree, Jessica M.; Stephens, Kelly S.; Grutzik, S.J.

Brittle material failure in high consequence systems can appear random and unpredictable at subcritical stresses. Gaps in our understanding of how structural flaws and environmental factors (humidity, temperature) impact fracture propagation need to be addressed to circumvent this issue. A combined experimental and computational approach composed of molecular dynamics (MD) simulations, numerical modeling, and atomic force microscopy (AFM) has been undertaken to identify mechanisms of slow crack growth in silicate glasses. AFM characterization of crack growth as slow as 10-13 m/s was observed, with some stepwise crack growth. MD simulations have identified the critical role of inelastic relaxation in crack propagation, including evolution of the structure during relaxation. A numerical model for the existence of a stress intensity threshold, a stress intensity below which a fracture will not propagate, was developed. This transferrable model for predicting slow crack growth is being incorporated into mission-based programs.

More Details
Results 5501–5600 of 99,299
Results 5501–5600 of 99,299