Publications

14 Results
Skip to search filters

2D-imaging of absolute OH and H2O2 profiles in a He–H2O nanosecond pulsed dielectric barrier discharge by photo-fragmentation laser-induced fluorescence

Plasma Sources Science and Technology

van den Bekerom, Dirk C.; Tahiyat, Malik M.; Huang, Erxiong H.; Frank, Jonathan H.; Farouk, Tanvir I.

We report pulsed dielectric barrier discharges (DBD) in He–H2O and He–H2O–O2 mixtures are studied in near atmospheric conditions using temporally and spatially resolved quantitative 2D imaging of the hydroxyl radical (OH) and hydrogen peroxide (H2O2 ). The primary goal was to detect and quantify the production of these strongly oxidative species in water-laden helium discharges in a DBD jet configuration, which is of interest for biomedical applications such as disinfection of surfaces and treatment of biological samples. Hydroxyl profiles are obtained by laser-induced fluorescence (LIF) measurements using 282 nm laser excitation. Hydrogen peroxide profiles are measured by photo-fragmentation LIF (PF-LIF), which involves photo-dissociating H2O2 into OH with a 212.8 nm laser sheet and detecting the OH fragments by LIF. The H2O2 profiles are calibrated by measuring PF-LIF profiles in a reference mixture of He seeded with a known amount of H2O2 . OH profiles are calibrated by measuring OH-radical decay times and comparing these with predictions from a chemical kinetics model. Two different burst discharge modes with five and ten pulses per burst are studied, both with a burst repetition rate of 50 Hz. In both cases, dynamics of OH and H2O2 distributions in the afterglow of the discharge are investigated. Gas temperatures determined from the OH-LIF spectra indicate that gas heating due to the plasma is insignificant. The addition of 5% O2 in the He admixture decreases the OH densities and increases the H2O2 densities. The increased coupled energy in the ten-pulse discharge increases OH and H2O2 mole fractions, except for the H2O2 in the He–H2O–O2 mixture which is relatively insensitive to the additional pulses.

More Details

2D imaging of absolute methyl concentrations in nanosecond pulsed plasma by photo-fragmentation laser-induced fluorescence

Plasma Sources Science and Technology

van den Bekerom, Dirk C.; Richards, Caleb R.; Huang, Erxiong H.; Adamovich, Igor A.; Frank, Jonathan H.

The methyl radical plays a central role in plasma-assisted hydrocarbon chemistry but is challenging to detect due to its high reactivity and strongly pre-dissociative electronically excited states. In this work, we report the development of a photo-fragmentation laser-induced fluorescence (PF-LIF) diagnostic for quantitative 2D imaging of methyl profiles in a plasma. This technique provides temporally and spatially resolved measurements of local methyl distributions, including in near-surface regions that are important for plasma-surface interactions such as plasma-assisted catalysis. The technique relies on photo-dissociation of methyl by the fifth harmonic of a Nd:YAG laser at 212.8 nm to produce CH fragments. These photofragments are then detected with LIF imaging by exciting a transition in the B-X(0, 0) band of CH with a second laser at 390 nm. Fluorescence from the overlapping A-X(0, 0), A-X(1, 1), and B-X(0, 1) bands of CH is detected near 430 nm with the A-state populated by collisional B-A electronic energy transfer. This non-resonant detection scheme enables interrogation close to a surface. The PF-LIF diagnostic is calibrated by producing a known amount of methyl through photo-dissociation of acetone vapor in a calibration gas mixture. We demonstrate PF-LIF imaging of methyl production in methane-containing nanosecond pulsed plasmas impinging on dielectric surfaces. Absolute calibration of the diagnostic is demonstrated in a diffuse, plane-to-plane discharge. Measured profiles show a relatively uniform distribution of up to 30 ppm of methyl. Relative methyl measurements in a filamentary plane-to-plane discharge and a plasma jet reveal highly localized intense production of methyl. The utility of the PF-LIF technique is further demonstrated by combining methyl measurements with formaldehyde LIF imaging to capture spatiotemporal correlations between methyl and formaldehyde, which is an important intermediate species in plasma-assisted oxidative coupling of methane.

More Details

Development and Use of an Ultra-High Resolution Electron Scattering Apparatus

Frank, Jonathan H.; Smoll, Eric J.; Jana, Irina J.; Huang, Erxiong H.; Chandler, D.W.

In this LDRD project, we developed a versatile capability for high-resolution measurements of electron scattering processes in gas-phase molecules, such as ionization, dissociation, and electron attachment/detachment. This apparatus is designed to advance fundamental understanding of these processes and to inform predictions of plasmas associated with applications such as plasma-assisted combustion, neutron generation, re-entry vehicles, and arcing that are critical to national security. We use innovative coupling of electron-generation and electron-imaging techniques that leverages Sandia’s expertise in ion/electron imaging methods. Velocity map imaging provides a measure of the kinetic energies of electrons or ion products from electron scattering in an atomic or molecular beam. We designed, constructed, and tested the apparatus. Tests include dissociative electron attachment to O2 and SO2, as well as a new method for studying laser-initiated plasmas. This capability sets the stage for new studies in dynamics of electron scattering processes, including scattering from excited-state atoms and molecules.

More Details

Near-Surface Imaging of the Multicomponent Gas Phase above a Silver Catalyst during Partial Oxidation of Methanol

ACS Catalysis

Zhou, Bo; Huang, Erxiong H.; Almeida, Raybel A.; Gurses, Sadi; Ungar, Alexander; Zetterberg, Johan; Kulkarni, Ambarish; Kronawitter, Coleman X.; Osborn, David L.; Hansen, Nils H.; Frank, Jonathan H.

Fundamental chemistry in heterogeneous catalysis is increasingly explored using operando techniques in order to address the pressure gap between ultrahigh vacuum studies and practical operating pressures. Because most operando experiments focus on the surface and surface-bound species, there is a knowledge gap of the near-surface gas phase and the fundamental information the properties of this region convey about catalytic mechanisms. We demonstrate in situ visualization and measurement of gas-phase species and temperature distributions in operando catalysis experiments using complementary near-surface optical and mass spectrometry techniques. The partial oxidation of methanol over a silver catalyst demonstrates the value of these diagnostic techniques at 600 Torr (800 mbar) pressure and temperatures from 150 to 410 °C. Planar laser-induced fluorescence provides two-dimensional images of the formaldehyde product distribution that show the development of the boundary layer above the catalyst under different flow conditions. Raman scattering imaging provides measurements of a wide range of major species, such as methanol, oxygen, nitrogen, formaldehyde, and water vapor. Near-surface molecular beam mass spectrometry enables simultaneous detection of all species using a gas sampling probe. Detection of gas-phase free radicals, such as CH3 and CH3O, and of minor products, such as acetaldehyde, dimethyl ether, and methyl formate, provides insights into catalytic mechanisms of the partial oxidation of methanol. The combination of these techniques provides a detailed picture of the coupling between the gas phase and surface in heterogeneous catalysis and enables parametric studies under different operating conditions, which will enhance our ability to constrain microkinetic models of heterogeneous catalysis.

More Details

Wavelet-based algorithm for correction of beam-steering artefacts in turbulent flow imaging at elevated pressures

Experiments in Fluids

Zhou, Bo Z.; Ruggles, Adam J.; Huang, Erxiong H.; Frank, Jonathan H.

Abstract: Beam steering by index-of-refraction gradients poses a significant challenge for laser-based imaging measurements in turbulent reacting and non-reacting flows, particularly at elevated pressures. High fidelity imaging and quantitative data interpretation in turbulent flows can be considerably impeded by artefacts generated from beam steering. A wavelet-based filtering scheme has been developed to recover the underlying turbulent flow structures from imaging measurements containing severe beam-steering artefacts. This analysis technique is equally applicable to imaging measurements in reacting and non-reacting flows. It is demonstrated using mixture fraction measurements in a transient turbulent jet flow at 8 bar using Rayleigh scattering imaging at a repetition rate of 100 kHz. The corrected images reveal the temporal evolution of flow structures with negligible residual beam-steering artefacts. Tests of the sensitivity of the wavelet-based filtering scheme to noise and spatial resolution indicate that it is a robust analytic tool for correcting severe beam-steering artefacts commonly encountered in laser-based imaging measurements at elevated pressures. Graphic abstract: [Figure not available: see fulltext.].

More Details

Quantitative Imaging of Turbulent Mixing Dynamics in High-Pressure Fuel Injection to Enable Predictive Simulations of Engine Combustion

Frank, Jonathan H.; Pickett, Lyle M.; Bisson, Scott E.; Patterson, Brian D.; Ruggles, Adam J.; Skeen, Scott A.; Manin, Julien L.; Huang, Erxiong H.; Cicone, Dave J.; Sphicas, Panos S.

In this LDRD project, we developed a capability for quantitative high - speed imaging measurements of high - pressure fuel injection dynamics to advance understanding of turbulent mixing in transcritical flows, ignition, and flame stabilization mechanisms, and to provide e ssential validation data for developing predictive tools for engine combustion simulations. Advanced, fuel - efficient engine technologies rely on fuel injection into a high - pressure, high - temperature environment for mixture preparation and com bustion. Howe ver, the dynamics of fuel injection are not well understood and pose significant experimental and modeling challenges. To address the need for quantitative high - speed measurements, we developed a Nd:YAG laser that provides a 5ms burst of pulses at 100 kHz o n a robust mobile platform . Using this laser, we demonstrated s patially and temporally resolved Rayleigh scattering imaging and particle image velocimetry measurements of turbulent mixing in high - pressure gas - phase flows and vaporizing sprays . Quantitativ e interpretation of high - pressure measurements was advanced by reducing and correcting interferences and imaging artifacts.

More Details
14 Results
14 Results