A Multivariate Space-Time Dynamic Modelfor characterizing downstream impacts of the 1991 Mt Pinatubo volcanic eruption
Abstract not provided.
Abstract not provided.
Abstract not provided.
Seismological Research Letters
Induced seismicity is an inherent risk associated with geologic carbon storage (GCS) in deep rock formations that could contain undetected faults prone to failure. Modeling-based risk assessment has been implemented to quantify the potential of injection-induced seismicity, but typically simplified multiscale geologic features or neglected multiphysics coupled mechanisms because of the uncertainty in field data and computational cost of field-scale simulations, which may limit the reliable prediction of seismic hazard caused by industrial-scale CO2 storage. The degree of lateral continuity of the stratigraphic interbedding below the reservoir and depth-dependent fault permeability can enhance or inhibit pore-pressure diffusion and corresponding poroelastic stressing along a basement fault. This study presents a rigorous modeling scheme with optimal geological and operational parameters needed to be considered in seismic monitoring and mitigation strategies for safe GCS.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
CAD Computer Aided Design
Interval Assignment (IA) is the problem of selecting the number of mesh edges (intervals) for each curve for conforming quad and hex meshing. The intervals x is fundamentally integer-valued. Many other approaches perform numerical optimization then convert a floating-point solution into an integer solution, which is slow and error prone. We avoid such steps: we start integer, and stay integer. Incremental Interval Assignment (IIA) uses integer linear algebra (Hermite normal form) to find an initial solution to the meshing constraints, satisfying the integer matrix equation Ax=b. Solving for reduced row echelon form provides integer vectors spanning the nullspace of A. We add vectors from the nullspace to improve the initial solution, maintaining Ax=b. Heuristics find good integer linear combinations of nullspace vectors that provide strict improvement towards variable bounds or goals. IIA always produces an integer solution if one exists. In practice we usually achieve solutions close to the user goals, but there is no guarantee that the solution is optimal, nor even satisfies variable bounds, e.g. has positive intervals. We describe several algorithmic changes since first publication that tend to improve the final solution. The software is freely available.
Abstract not provided.
International Journal of Engine Research
Multi-hole gasoline injectors operating at conditions spanning throttled early-intake stroke operation produce spray plumes that either remained separated or merge and collapse due to flash boiling. Flash boiling occurs due to the sudden expansion of gas bubbles in the liquid fuel at high fuel temperature and low ambient pressure. This study records high-speed images of spray-morphology changes due to in-cylinder flow, thereby revealing operating conditions that do and do not affect the self-induced morphology observed in quiescent vessels. Specifically, in a central-injection, four-valve, high-tumble engine, where the thermodynamic state and in-cylinder cross flow are dynamic. Motivated by cold start and hot restart operation, the fuel pressure, coolant temperature, in-cylinder air pressure, and engine rpm were systematically varied over relevant operating conditions, which bracketed the range from non- to flash-boiling sprays. The results reveal the operating conditions at which the in-cylinder cross flow disrupts the spray morphology as well as the extent of the disruption. At 650 rpm, the spray morphology was similar to that observed in quiescent vessels at nominally equivalent fuel temperature and in-cylinder pressure, indicating that the spray’s self-induced entrainment flow dominated the in-cylinder flow. However, for fuel temperature and ambient pressure near the transition between non- and flash-boiling, the intake cross flow at higher engine speed (1950 rpm) significantly disrupted the spray morphology. The high cross-flow velocity appears to induce plume merging and collapse, whereas none was evident at low rpm (650 rpm). This study led to the postulate that the spray merging and collapse are governed by the rate of atomization near the nozzle exit, presumed to be controlled by either or both aerodynamic atomization and flash-boiling intensity. It would then follow that spray modeling in CFD requires atomization models that blend the effects of both physical processes.
This volume of the Federal Radiological Monitoring and Assessment Center (FRMAC) Assessment Manual was developed to serve as a quick-start guide to expedite response for pre-assessed scenarios before event-specific information becomes available. The objective of Volume 3 is to provide dose assessors with the scenario-specific protective action guidance questions likely to be asked at the start of a response, along with supporting technical information and assumptions that differ from the default assumptions defined in Volume 2 of the Assessment Manual.
Seismological Research Letters
The Z Machine at Sandia National Laboratories is a pulsed power facility for high-energy density physics experiments that can shock materials to extreme temperatures and pressures through a focused energy release of up to ∼ 25 MJ in < 100 nanoseconds. It has been in operation for more than two decades and conducts up to ∼ 100 experiments, or “shots,” per year. Based on a set of 74 known shot times from 2018, we determined that Z Machine shots produce detectable ∼ 3–17 Hz ground motion 12 km away at the Albuquerque Seismological Laboratory, New Mexico (ANMO), borehole seismograph, with peak signal at ∼ 7 Hz. The known shot waveforms were used to create a three-component template, leading to the detection of 2339 Z Machine shots since 1998 through single-station cross-correlation. Local seismic magnitude estimates range from local magnitude (ML) -2 to -1.3 and indicate that only a small fraction of the shot energy is transmitted by seismic phases observable at 12 km distance. The most recent major facility renovation, which was intended to decrease mechanical dissipation, is associated with an abrupt decrease in observed seismic amplitudes at ANMO despite stable maximum shot energy. The highly repetitive impulsive sources are well suited to coda-wave interferometry to investigate time-dependent velocity structures. Relative velocity variations (dv/v) show an annual cycle with amplitude of ∼ 0.2%. Local minima are observed in the late spring, and dv/v increases through the summer monsoon rainfall, possibly reflecting patchy saturation as rainfall infiltrates near the eastern edge of the Albuquerque basin. The cumulative results demonstrate that forensic seismology can provide insight into long-term operation of facilities such as pulsed-power laboratories, and that their recurring signals may be valuable for studies of time-dependent structure.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
As climate change progresses, there will be greater pressure on state and nonstate actors to mitigate associated harms. This pressure will encourage aggressive action on climate change, including more ambitious emissions reduction goals and the use of both conventional and novel environmental modification techniques. Existing international agreements—including the Paris Agreement and the Environmental Modification Convention (ENMOD)—are critical to ensuring that climate change mitigation is achieved through peaceful, meaningful, and sustainable methods. With this in mind, this paper provides an overview of the Paris Agreement and ENMOD and identifies updates required for these agreements to meet the evolving challenges of climate change.
International Journal of Engine Research
Diesel piston-bowl shape is a key design parameter that affects spray-wall interactions and turbulent flow development, and in turn affects the engine’s thermal efficiency and emissions. It is hypothesized that thermal efficiency can be improved by enhancing squish-region vortices as they are hypothesized to promote fuel-air mixing, leading to faster heat-release rates. However, the strength and longevity of these vortices decrease with advanced injection timings for typical stepped-lip (SL) piston geometries. Dimple stepped-lip (DSL) pistons enhance vortex formation at early injection timings. Previous engine experiments with such a bowl show 1.4% thermal efficiency gains over an SL piston. However, soot was increased dramatically [SAE 2022-01-0400]. In a previous study, a new DSL bowl was designed using non-combusting computational fluid dynamic simulations. This improved DSL bowl is predicted to promote stronger, more rotationally energetic vortices than the baseline DSL piston: it employs shallower, narrower, and steeper-curved dimples that are placed further out into the squish region. In the current experimental study, this improved bowl is tested in a medium-duty diesel engine and compared against the SL piston over an injection timing sweep at low-load and part-load operating conditions. No substantial thermal efficiency gains are achieved at the early injection timing with the improved DSL design, but soot emissions are lowered by 45% relative to the production SL piston, likely due to improved air utilization and soot oxidation. However, these benefits are lost at late injection timings, where the DSL piston renders a lower thermal efficiency than that of the SL piston. Energy balance analyses show higher wall heat transfer with the DSL piston than with the SL piston despite a 1.3% reduction in the piston surface area. Vortex enhancement may not necessarily lead to improved efficiency as more energetic squish-region vortices can lead to higher convective heat transfer losses.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Process Safety and Environmental Protection
HyRAM+ is a toolkit that includes fast-running models for the unconstrained (i.e., no wall interactions) dispersion and flames for non-premixed fuels. The models were developed for use with hydrogen, but the toolkit was expanded to include propane and methane in a recent release. In this work we validate the dispersion and flame models for these additional fuels, based on reported literature data. The validation efforts spanned a range of release conditions, from subsonic to underexpanded jets and flames for a range of mass flow rates. In general, the dispersion model works well for both propane and methane although the width of the jet/plume is predicted to be wider than observed in some cases. The flame model tends to over-predict the induced buoyancy for low-momentum flames, while the radiative heat flux agrees with the experimental data reasonably well, for both fuels. The models could be improved but give acceptable predictions for propane and methane behavior for the purposes of risk assessment.
Journal of Molecular Liquids
Decreasing cost of technologies for direct air capture of carbon can be achieved through the design of new materials with high CO2 selectivity that can be incorporated into existing industrial processes. An emerging class of materials for these applications are porous liquids (PLs). PLs are mixtures of porous hosts and solvents with intrinsic porosity due to steric exclusion of solvent from inside the porous host. It is currently unknown how solvent -porous host interactions affect porous host solubility in the bulk solvent. Here, density functional theory simulations were used to investigate interactions between nine solvents and a CC13 porous organic cage (POC). Calculations identified that solvent molecules were the most stable when placed either inside the CC13 POC or in the pore window compared to interfacial binding sites. Structural changes to the CC13 POC correlated with reported experimental solubilities, including expansion of the CC13 POC with solvent molecule infiltration and expansion or contraction of the pore window. Based on these results, new PL design guidelines should include compositions with (1) high concentrations of POCs with flexible cage structures that can expand when solvated and (2) solvent molecule-POC combinations that contract the pore window during solvent molecule-host binding.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Laboratory shear tests were conducted on pulverized Sierra White granite (SWG) to investigate slip mechanisms in naturally occurring faults. Synthetic fault geometries were constructed by sandwiching fine grained SWG powder in between steel forcing blocks. For dry experiments, ~3.5 g of SWG powder was poured onto the face of the lower steel forcing block and leveled. For saturated experiments, enough fluid was added to the ~3.5 g of Sierra White granite powder to form a slurry. This slurry was applied to the lower forcing block and leveled. Inclined forcing blocks with 25.4 mm diameter and 35° faces, which were machined from ground steel rods with fine teeth on the faces, help to hold the gouge in place and prevent delamination at the interface. The top forcing block had a 2.03 mm centered hole to allow pore fluid access to the gouge. A fine steel mesh prevented back flow of the gouge into pore fluid lines. Samples were isolated from the confining medium using three layers of heat shrink polyolefin, as shown in Figure 1. The outer layer was shrunk over the o-rings on the end caps to form an impermeable seal, which was reinforced with steel tie wires on both sides of the o-rings. Hardened steel spacers and copper shim stock was placed between the steel forcing blocks and the end caps to preserve the parallelism of the Hastelloy wetted parts. For dry samples, the end caps were plugged, while the end caps for the saturated samples were connected to pore lines.
The flow and particle deposition patterns on surfaces in an idealized spacer grid for a 17x17 pressurized water reactor (PWR) assembly in a spent fuel canister are modeled using computational fluid dynamics (CFD) with laminar flow. The effects of gravitational settling, non-Stokesian flow, and particle slip are first rigorously analyzed. From the analysis, non-Stokesian effects and slip may be neglected for the particle sizes and conditions expected in a canister. For particles that do not settle out, a swirling flow pattern at the corners of a spacer grid channel directs particles to the leeward side of the flow vanes where much of the deposition occurs. Particle deposition increases with increasing particle diameter. Deposition also increases with decreasing flow velocity as this provides more time for particles to settle and deposit on the leeward side of the flow vanes. The fraction of particles that are transmitted through a spacer grid is determined as a function of inlet gas velocity and particle diameter by running the CFD calculation for each set of conditions and for each particle diameter. Curve fits of the transmission curve as a function of particle diameter for a specified spacer grid and flow velocity are applied to a lognormal particle mass density function for the inlet particles. The resulting mass density function and aerosol mass fraction that passes through the spacer grid can be determined analytically without resorting to numerical iteration. A sample calculation of the analytical solution is demonstrated for a lognormal particle mass density function.
The goal of this work is to develop a wafer level copper electrochemical deposition process for high aspect ratio through silicon vias and test the reliability and functionality of TSVs for integration into MEMS applications.
Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory
In typical carbonyl-containing molecules, bond dissociation events follow initial excitation to $nπ_{C=O}$$^*$ states. However, in acetyl iodide, the iodine atom gives rise to electronic states with mixed $nπ_{C=O}$$^*$ and $nπ_{C–I}$$^*$ character, leading to complex excited-state dynamics, ultimately resulting in dissociation. Using ultrafast extreme ultraviolet (XUV) transient absorption spectroscopy and quantum chemical calculations, we present an investigation of the primary photodissociation dynamics of acetyl iodide via time-resolved spectroscopy of core-to-valence transitions of the I atom after 266 nm excitation. The probed I 4d-to-valence transitions show features that evolve on sub-100-fs time scales, reporting on excited-state wavepacket evolution during dissociation. These features subsequently evolve to yield spectral signatures corresponding to free iodine atoms in their spin–orbit ground and excited states with a branching ratio of 1.1:1 following dissociation of the C–I bond. Calculations of the valence excitation spectrum via equation-of-motion coupled cluster with single and double substitutions (EOM-CCSD) show that initial excited states are of spin-mixed character. From the initially pumped spin-mixed state, we use a combination of time-dependent density functional theory (TDDFT)-driven nonadiabatic ab initio molecular dynamics and EOM-CCSD calculations of the N$_{4,5}$ edge to reveal a sharp inflection point in the transient XUV signal that corresponds to rapid C–I homolysis. Here, by examining the molecular orbitals involved in the core-level excitations at and around this inflection point, we are able to piece together a detailed picture of C–I bond photolysis in which d → σ* transitions give way to d → p excitations as the bond dissociates. We also report theoretical predictions of short-lived, weak 4d → 5d transitions in acetyl iodide, validated by weak bleaching in the experimental transient XUV spectra. This joint experimental–theoretical effort has thus unraveled the detailed electronic structure and dynamics of a strongly spin–orbit coupled system.
Tomography of Materials and Structures
The mechanical behavior of partial-penetration laser welds exhibits significant variability in engineering quantities such as strength and apparent ductility. Understanding the root cause of this variability is important when using such welds in engineering designs. In Part II of this work, we develop finite element simulations with geometry derived from micro-computed tomography (μCT) scans of partial-penetration 304L stainless steel laser welds that were analyzed in Part I. We use these models to study the effects of the welds’ small-scale geometry, including porosity and weld depth variability, on the structural performance metrics of weld ductility and strength under quasi-static tensile loading. We show that this small-scale geometry is the primary cause of the observed variability for these mechanical response quantities. Additionally, we explore the sensitivity of model results to the conversion of the μCT data to discretized model geometry using different segmentation algorithms, and to the effect of small-scale geometry simplifications for pore shape and weld root texture. The modeling approach outlined and results of this work may be applicable to other material systems with small-scale geometric features and defects, such as additively manufactured materials.
Physical Review Accelerators and Beams
Recent studies of power flow and particle transport in multi-MA pulsed-power accelerators demonstrate that electrode plasmas may reduce accelerator efficiency by shunting current upstream from the load. The detailed generation and evolution of these electrode plasmas are examined here using fully relativistic, Monte Carlo particle-in-cell (PIC) and magnetohydrodynamic (MHD) simulations over a range of peak currents (8–48 MA). The PIC calculations, informed by vacuum science, describe the electrode surface breakdown and particle transport prior to electrode melt. The MHD calculations show the bulk electrode evolution during melt. The physical description provided by this combined study begins with the rising local magnetic field that increases the local electrode surface temperature. This initiates the thermal desorption of contaminants from the electrode surface, with contributions from atoms outgassing from the bulk metal. The contaminants rapidly ionize forming a 1015-1018 cm-3 plasma that is effectively resistive while weakly collisional because it is created within, and rapidly penetrated by, a strong magnetic field (> 30 T). Prior to melting, the density of this surface plasma is limited by the concentration of absorbed contaminants in the bulk (~1019 cm-3 for hydrogen), its diffusion, and ionization. Eventually, the melting electrodes form a conducting plasma (1021-1023 cm-3) that experiences j × B compression and a typical decaying magnetic diffusion profile. This physical sequence ignores the transport of collisional plasmas of 1019 cm-3 which may arise from electrode defects and associated instabilities. Nonetheless, this picture of plasma formation and melt may be extrapolated to higher-energy pulsed-power systems.
Macromolecules
Recent studies on off-stoichiometric thermosets reveal unique viscoelastic behavior derived from increased free volume and physical interactions between chain ends. To understand structural characteristics arising from cure and its effect on properties, we developed a Monte Carlo model based on step-growth polymerization. Our model accurately predicted structure-property trends for a two-component system of EPON 828 (EPON) and ethylenediamine. A second epoxy monomer, D.E.R. 732 (DER), was investigated to modulate Tg. Binary mixtures of EPON and DER in off-stoichiometric, amine-rich formulations resulted in nonlinear evolution of thermomechanical properties with respect to initial formulation stoichiometry. Modifying our model with kinetic parameters allowing for differential epoxide/amine reaction kinetics only partially accounted for trends in Tg, suggesting that spatiotemporal contributions─not captured by our model─were significant determinants of material properties compared to polymer architecture for three-component systems. These findings underpin the importance of spatial awareness in modeling to inform the development of dynamic thermosets.
Journal of Chemical Information and Modeling
This paper focuses on the development of multifidelity modeling approaches using neural network surrogates, where training data arising from multiple model forms and resolutions are integrated to predict high-fidelity response quantities of interest at lower cost. We focus on the context of quantum chemistry and the integration of information from multiple levels of theory. Important foundations include the use of symmetry function-based atomic energy vector constructions as feature vectors for representing structures across families of molecules and single-fidelity neural network training capabilities that learn the relationships needed to map feature vectors to potential energy predictions. These foundations are embedded within several multifidelity topologies that decompose the high-fidelity mapping into model-based components, including sequential formulations that admit a general nonlinear mapping across fidelities and discrepancy-based formulations that presume an additive decomposition. Methodologies are first explored and demonstrated on a pair of simple analytical test problems and then deployed for potential energy prediction for C5H5 using B2PLYP-D3/6-311++G(d,p) for high-fidelity simulation data and Hartree-Fock 6-31G for low-fidelity data. For the common case of limited access to high-fidelity data, our computational results demonstrate that multifidelity neural network potential energy surface constructions achieve roughly an order of magnitude improvement, either in terms of test error reduction for equivalent total simulation cost or reduction in total cost for equivalent error.
Optics Express
A cloud of very fast, O(km/s), and very fine, O(µm), particles may be ejected when a strong shock impacts and possibly melts the free surface of a solid metal. To quantify these dynamics, this work develops an ultraviolet, long-working distance, two-pulse Digital Holographic Microscopy (DHM) configuration and is the first to replace film recording with digital sensors for this challenging application. A proposed multi-iteration DHM processing algorithm is demonstrated for automated measures of the sizes, velocities, and three-dimensional positions of non-spherical particles. Ejecta as small as 2 µm diameter are successfully tracked, while uncertainty simulations indicate that particle size distributions are accurately quantified for diameters ≥4 µm. These techniques are demonstrated on three explosively driven experiments. Measured ejecta size and velocity statistics are shown to be consistent with prior film-based recording, while also revealing spatial variations in velocities and 3D positions that have yet to be widely investigated. Having eliminated time-consuming analog film processing, the methodologies proposed here are expected to significantly accelerate future experimental investigation of ejecta physics.
Integrating Materials and Manufacturing Innovation
Multimodal datasets of materials are rich sources of information which can be leveraged for expedited discovery of process–structure–property relationships and for designing materials with targeted structures and/or properties. For this data descriptor article, we provide a multimodal dataset of magnetron sputter-deposited molybdenum (Mo) thin films, which are used in a variety of industries including high temperature coatings, photovoltaics, and microelectronics. In this dataset we explored a process space consisting of 27 unique combinations of sputter power and Ar deposition pressure. Here, the phase, structure, surface morphology, and composition of the Mo thin films were characterized by x-ray diffraction, scanning electron microscopy, atomic force microscopy, and Rutherford backscattering spectrometry. Physical properties—namely, thickness, film stress and sheet resistance—were also measured to provide additional film characteristics and behaviors. Additionally, nanoindentation was utilized to obtain mechanical load-displacement data. The entire dataset consists of 2072 measurements including scalar values (e.g., film stress values), 2D linescans (e.g., x-ray diffractograms), and 3D imagery (e.g., atomic force microscopy images). An additional 1889 quantities, including film hardness, modulus, electrical resistivity, density, and surface roughness, were derived from the experimental datasets using traditional methods. Minimal analysis and discussion of the results are provided in this data descriptor article to limit the authors’ preconceived interpretations of the data. Overall, the data modalities are consistent with previous reports of refractory metal thin films, ensuring that a high-quality dataset was generated. The entirety of this data is committed to a public repository in the Materials Data Facility.
Advanced Science
Focused ion beam implantation is ideally suited for placing defect centers in wide bandgap semiconductors with nanometer spatial resolution. However, the fact that only a few percent of implanted defects can be activated to become efficient single photon emitters prevents this powerful capability to reach its full potential in photonic/electronic integration of quantum defects. Here an industry adaptive scalable technique is demonstrated to deterministically create single defects in commercial grade silicon carbide by performing repeated low ion number implantation and in situ photoluminescence evaluation after each round of implantation. An array of 9 single defects in 13 targeted locations is successfully created—a ≈70% yield which is more than an order of magnitude higher than achieved in a typical single pass ion implantation. The remaining emitters exhibit non-classical photon emission statistics corresponding to the existence of at most two emitters. This approach can be further integrated with other advanced techniques such as in situ annealing and cryogenic operations to extend to other material platforms for various quantum information technologies.
ACS Earth and Space Chemistry
Mineral dust can indirectly impact climate by nucleation of atmospheric solids, for example, by heterogeneously nucleating ice in mixed-phase clouds or by impacting the phase of aerosols and clouds through contact nucleation. The effectiveness toward nucleation of individual components of mineral dust requires further study. Here, the nucleation behavior of metal oxide nanoparticle components of atmospheric mineral dust is investigated. A long-working-distance optical trap is used to study contact and immersion nucleation of ammonium sulfate by transition-metal oxides, and an environmental chamber is used to probe depositional ice nucleation on metal oxide particles. Previous theory dictates that ice nucleation and heterogeneous nucleation of atmospheric salts can be impacted by several factors including morphology, lattice match, and surface area. Here, we observe a correlation between the cationic oxidation states of the metal oxide heterogeneous nuclei and their effectiveness in causing nucleation in both contact efflorescence mode and depositional freezing mode. In contrast to the activity of contact efflorescence, the same metal oxide particles did not cause a significant increase in efflorescence relative humidity when immersed in the droplet. These experiments suggest that metal speciation, possibly as a result of cationic charge sites, may play a role in the effectiveness of nucleation that is initiated at particle surfaces.
Joule
Lithium metal solid-state batteries (LiSSBs) present new challenges in the measurement of material, component, and cell mechanical behaviors and in the measurement and theory of fundamental mechanical-electrochemical (thermodynamics, transport, and kinetics) couplings. Here, we classify the major mechanical and electrochemical-mechanical (ECM) studies underway and provide an overview of major mechanical testing platforms. We emphasize key distinctions among testing platforms, including tip- vs. platen-based sample compression, surface- vs. volume-based analysis, ease of integration with a vacuum or inert atmosphere environment, the ability to control and measure force/displacement over long periods of time, ranges of force and contact area, and others. Among the techniques we review, nanoindentation platforms offer some unique benefits associated with being able to use both tip-based nanoindentation techniques as well as platen-based compression over areas approaching 1 mm2. Sample design is also important: while most efforts are particle-based (i.e., using particles of solid electrolyte and cathode-active materials and densifying them using sintering or pressure), the resulting electrochemical response is from the overall collection of particles present. In contrast, thin-film (<1 μm) solid-state battery materials (e.g., Li, LiPON, LCO) provide well defined and uniform structures well suited for fundamental electrochemical-mechanical studies and offer an important opportunity to drive underlying scientific advances in LiSSB and other areas. We believe there are exciting opportunities to advance the measurement of both mechanical properties and electrochemical-mechanical couplings through the careful and novel co-design of test structures and experimental approaches for LiSSB materials, components, and cells.
Cell Reports Physical Science
Lithium dendrite growth hinders the use of lithium metal anodes in commercial batteries. We present a 3D model to study the mechanical and electrochemical mechanisms that drive microscale plating. With this model, we investigate electrochemical response across a lithium protrusion characteristic of rough anode surfaces, representing the separator as a porous polymer in non-conformal contact with a lithium anode. The impact of pressure on separator morphology and electrochemical response is of particular interest, as external pressure can improve cell performance. We explore the relationships between plating propensity, stack pressure, and material properties. External pressure suppresses lithium plating due to interfacial stress and separator pore closure, leading to inhomogeneous plating rates. For moderate pressures, dendrite growth is completely suppressed, as plating will occur in the electrolyte-filled gaps between anode and separator. In fast-charging conditions and systems with low electrolyte diffusivities, the benefits of pressure are overridden by ion transport limitations.
IEEE Transactions on Dependable and Secure Computing
Network intrusion detection systems (NIDS) are commonly used to detect malware communications, including command-and-control (C2) traffic from botnets. NIDS performance assessments have been studied for decades, but mathematical modeling has rarely been used to explore NIDS performance. This paper details a mathematical model that describes a NIDS performing packet inspection and its detection of malware's C2 traffic. Here, the paper further describes an emulation testbed and a set of cyber experiments that used the testbed to validate the model. These experiments included a commonly used NIDS (Snort) and traffic with contents from a pervasive malware (Emotet). Results are presented for two scenarios: a nominal scenario and a “stressed” scenario in which the NIDS cannot process all incoming packets. Model and experiment results match well, with model estimates mostly falling within 95 % confidence intervals on the experiment means. Model results were produced 70-3000 times faster than the experimental results. Consequently, the model's predictive capability could potentially be used to support decisions about NIDS configuration and effectiveness that require high confidence results, quantification of uncertainty, and exploration of large parameter spaces. Furthermore, the experiments provide an example for how emulation testbeds can be used to validate cyber models that include stochastic variability.
Applied Physics Letters
Room temperature operation of terahertz quantum cascade lasers (THz QCLs) has been a long-pursued goal to realize compact semiconductor THz sources. In this paper, we report on improving the maximum operating temperature of THz QCLs to ∼261 K as a step toward the realization of this goal.
CrystEngComm
Herein, we report the synthesis of a novel, tetraphenylethylene-based ligand for metal-organic frameworks (MOFs). Incorporation of this ligand into a Zn- or Eu-based MOF increased the quantum yield (QY) by almost 2.5× compared to the linker alone. Furthermore, the choice of guest solvent impacted the QY and solvatochromatic response. These shifts are consistent with solvent dielectric constant as well as molecular polarizability.
Collective Intelligence
An analogy is drawn between the study of human behavior and the study of plutonium to demonstrate that soft and hard sciences are more similar than different, making the distinction moot and unproductive. The studies of human behavior and plutonium follow a common scientific research cycle that aligns with Thomas Kuhn’s views of scientific change. This common research cycle provides evidence that the thought processes and methodologies required for success are congruent in the soft and hard sciences. The primary implication from this analogy is that scientists in all disciplines should eradicate the distinction between soft and hard sciences. Focusing on similarities rather than differences among researchers from different disciplines is necessary to enhance collective intelligence and the type of transdisciplinary collaboration required to tackle difficult sociotechnical problems.
Acta Crystallographica Section E: Crystallographic Communications
The resurgence of interest in hydrogen-related technologies has stimulated new studies aimed at advancing lesser-developed water-splitting processes, such as solar thermochemical hydrogen production (STCH). Progress in STCH has been largely hindered by a lack of new materials able to efficiently split water at a rate comparable to ceria under identical experimental conditions. BaCe0.25Mn0.75O3 (BCM) recently demonstrated enhanced hydrogen production over ceria and has the potential to further our understanding of two-step thermochemical cycles. A significant feature of the 12R hexagonal perovskite structure of BCM is the tendency to, in part, form a 6H polytype at high temperatures and reducing environments (i.e., during the first step of the thermochemical cycle), which may serve to mitigate degradation of the complex oxide. An analogous compound, namely BaNb0.25Mn0.75O3 (BNM) with a 12R structure was synthesized and displays nearly complete conversion to the 6H structure under identical reaction conditions as BCM. The structure of the BNM-6H polytype was determined from Rietveld refinement of synchrotron powder X-ray diffraction data and is presented within the context of the previously established BCM-6H structure.
This report describes the results of a field demonstration of the proposed surface sampling techniques and plan for the multi-year Canister Deposition Field Demonstration (CDFD). The CDFD will evaluate salt deposition rates on three commercial 32PTH2 NUHOMS welded stainless steel storage canisters in Advanced Horizontal Storage Modules. Exposure testing is planned for up to 10 years and will incorporate periodic surface sampling campaigns. The goal of the planned dust sampling and analysis is to determine important environmental parameters that impact the potential occurrence of stress corrosion cracking on spent nuclear fuel (SNF) dry storage canisters. Specifically, measured dust deposition rates and deposited particle sizes will improve parameterization of dust deposition models employed to predict the potential occurrence and timing of stress corrosion cracks on the stainless steel SNF canisters. Previously, a preliminary sampling plan was developed, identifying possible sampling locations on the canister surfaces and sampling intervals; possible sampling methods were also described. Building from previous work, this report documents hand sampling from a spent nuclear fuel canister on a transfer skid mockup designed by Sandia National Laboratories. The sampling took place from a boom lift and salts were collected from mounted sample plates. The results of these efforts are presented in this report and compared to previous laboratory-controlled tests. The information obtained from the CDFD will be critical for ongoing efforts to develop a detailed understanding of the potential for stress corrosion cracking of SNF dry storage canisters.
Nano Letters
Engineering the transition metal dichalcogenide (TMD)-metal interface is critical for the development of two-dimensional semiconductor devices. By directly probing the electronic structures of WS2-Au and WSe2-Au interfaces with high spatial resolution, we delineate nanoscale heterogeneities in the composite systems that give rise to local Schottky barrier height modulations. Photoelectron spectroscopy reveals large variations (>100 meV) in TMD work function and binding energies for the occupied electronic states. Characterization of the composite systems with electron backscatter diffraction and scanning tunneling microscopy leads us to attribute these heterogeneities to differing crystallite orientations in the Au contact, suggesting an inherent role of the metal microstructure in contact formation. We then leverage our understanding to develop straightforward Au processing techniques to form TMD-Au interfaces with reduced heterogeneity. Our findings illustrate the sensitivity of TMDs’ electronic properties to metal contact microstructure and the viability of tuning the interface through contact engineering.
Nano Letters
Strong and ultrastrong coupling between intersubband transitions in quantum wells and cavity photons have been realized in mid-infrared and terahertz spectral regions. However, most previous works employed a large number of quantum wells on rigid substrates to achieve coupling strengths reaching the strong or ultrastrong coupling regime. In this work, we experimentally demonstrate ultrastrong coupling between the intersubband transition in a single quantum well and the resonant mode of photonic nanocavity at room temperature. We also observe strong coupling between the nanocavity resonance and the second-order intersubband transition in a single quantum well. Furthermore, we implement for the first time such intersubband cavity polariton systems on soft and flexible substrates and demonstrate that bending of the single quantum well does not significantly affect the characteristics of the cavity polaritons. This work paves the way to broaden the range of potential applications of intersubband cavity polaritons including soft and wearable photonics.
SAE Technical Papers
Liquefied Petroleum Gas (LPG), as a common alternative fuel for internal combustion engines is currently widespread in use for fleet vehicles. However, a current majority of the LPG-fueled engines, uses port-fuel injection that offers lower power density when compared to a gasoline engine of equivalent displacement volume. This is due to the lower molecular weight and higher volatility of LPG components that displaces more air in the intake charge due to the larger volume occupied by the gaseous fuel. LPG direct-injection during the closed-valve portion of the cycle can avoid displacement of intake air and can thereby help achieve comparable gasoline-engine power densities. However, under certain engine operating conditions, direct-injection sprays can collapse and lead to sub-optimal fuel-air mixing, wall-wetting, incomplete combustion, and increased pollutant emissions. Direct-injection LPG, owing to its thermo-physical properties is more prone to spray collapse than gasoline sprays. However, the impact of spray collapse for high-volatility LPG on mixture preparation and subsequent combustion is not fully understood. To this end, direct-injection, laser-spark ignition experiments using propane as a surrogate for LPG under lean and stoichiometric engine operating conditions were carried out in an optically accessible, single cylinder, heavy-duty, diesel engine. A quick-switching parallel propane and iso-octane fuel system allows for easy comparison between the two fuels. Fuel temperature, operating equivalence ratio and injection timing are varied for a parametric study. In addition to combustion characterization using conventional cylinder pressure measurements, optical diagnostics are employed. These include infrared (IR) imaging for quantifying fuel-air mixture homogeneity and high-speed natural luminosity imaging for tracking the spatial and temporal progression of combustion. Imaging of infrared emission from compression-heated fuel does not reveal any significant differences in the signal distribution between collapsing and non-collapsing sprays at the spark timing. Irrespective of coolant temperatures, early injection timing resulted in a homogeneous mixture that lead to repeatable flame evolution with minimal cycle-to-cycle variability for both LPG and iso-octane. However, late injection timing resulted in mixture inhomogeneity and non-isotropic turbulence distribution. Under lean operation with late injection timing, LPG combustion is shown to benefit from a more favorable mixture distribution and flow properties induced by spray collapse. On the other hand, identical operating conditions proved to be detrimental for iso-octane combustion most likely caused by distribution of lean mixtures near the spark location that negatively impact initial flame kernel growth leading to increased cycle-to-cycle variability.
SAE Technical Papers
Liquefied Petroleum Gas (LPG), as a common alternative fuel for internal combustion engines is currently widespread in use for fleet vehicles. However, a current majority of the LPG-fueled engines, uses port-fuel injection that offers lower power density when compared to a gasoline engine of equivalent displacement volume. This is due to the lower molecular weight and higher volatility of LPG components that displaces more air in the intake charge due to the larger volume occupied by the gaseous fuel. LPG direct-injection during the closed-valve portion of the cycle can avoid displacement of intake air and can thereby help achieve comparable gasoline-engine power densities. However, under certain engine operating conditions, direct-injection sprays can collapse and lead to sub-optimal fuel-air mixing, wall-wetting, incomplete combustion, and increased pollutant emissions. Direct-injection LPG, owing to its thermo-physical properties is more prone to spray collapse than gasoline sprays. However, the impact of spray collapse for high-volatility LPG on mixture preparation and subsequent combustion is not fully understood. To this end, direct-injection, laser-spark ignition experiments using propane as a surrogate for LPG under lean and stoichiometric engine operating conditions were carried out in an optically accessible, single cylinder, heavy-duty, diesel engine. A quick-switching parallel propane and iso-octane fuel system allows for easy comparison between the two fuels. Fuel temperature, operating equivalence ratio and injection timing are varied for a parametric study. In addition to combustion characterization using conventional cylinder pressure measurements, optical diagnostics are employed. These include infrared (IR) imaging for quantifying fuel-air mixture homogeneity and high-speed natural luminosity imaging for tracking the spatial and temporal progression of combustion. Imaging of infrared emission from compression-heated fuel does not reveal any significant differences in the signal distribution between collapsing and non-collapsing sprays at the spark timing. Irrespective of coolant temperatures, early injection timing resulted in a homogeneous mixture that lead to repeatable flame evolution with minimal cycle-to-cycle variability for both LPG and iso-octane. However, late injection timing resulted in mixture inhomogeneity and non-isotropic turbulence distribution. Under lean operation with late injection timing, LPG combustion is shown to benefit from a more favorable mixture distribution and flow properties induced by spray collapse. On the other hand, identical operating conditions proved to be detrimental for iso-octane combustion most likely caused by distribution of lean mixtures near the spark location that negatively impact initial flame kernel growth leading to increased cycle-to-cycle variability.
ACM International Conference Proceeding Series
Approximation algorithms for computationally complex problems are of significant importance in computing as they provide computational guarantees of obtaining practically useful results for otherwise computationally intractable problems. The demonstration of implementing formal approximation algorithms on spiking neuromorphic hardware is a critical step in establishing that neuromorphic computing can offer cost-effective solutions to significant optimization problems while retaining important computational guarantees on the quality of solutions. Here, we demonstrate that the Loihi platform is capable of effectively implementing the Goemans-Williamson (GW) approximation algorithm for MAXCUT, an NP-hard problem that has applications ranging from VLSI design to network analysis. We show that a Loihi implementation of the approximation step of the GW algorithm obtains equivalent maximum cuts of graphs as conventional algorithms, and we describe how different aspects of architecture precision impacts the algorithm performance.
SAE International Journal of Advances and Current Practices in Mobility
Mixture formation in a hydrogen-fueled heavy-duty engine with direct injection and a nearly-quiescent top-hat combustion chamber was investigated using laser-induced fluorescence imaging, with 1,4-difluorobenzene serving as a fluorescent tracer seeded into hydrogen. The engine was motored at 1200 rpm, 1.0 bar intake pressure, and 335 K intake temperature. An outward opening medium-pressure hollow-cone injector was operated at two different injection pressures and five different injection timings from early injection during the intake stroke to late injection towards the end of compression stroke. Fuel fumigation upstream of the intake provided a well-mixed reference case for image calibration. This paper presents the evolution of in-cylinder equivalence ratio distribution evaluated during the injection event itself for the cylinder-axis plane and during the compression stroke at different positions of the light sheet within the swirl plane. During the injection event, the originally annular jet collapses onto the jet axis within 1°CA after jet emergence and within 10 mm downstream of the nozzle. Multiple shock cells are visible - their size decreases with decreasing pressure ratio. The results of the equivalence ratio distribution show high cyclic variability of mixing for all injection timings during the compression stroke, but only minor variability with early injection during the intake stroke. The ensemble-mean fuel distribution shows that fuel-rich zones shift from the intake side to the exhaust side of the combustion chamber as the injection is advanced. Probability density functions of global equivalence ratio and equivalence ratio at potential spark locations suggest that retarded fuel injection might significantly increase NO emissions and the cyclic variability of early flame kernel development.
ACM International Conference Proceeding Series
Shunting inhibition is a potential mechanism by which biological systems multiply two time-varying signals, most recently proposed in single neurons of the fly visual system. Our work demonstrates this effect in a biological neuron model and the equivalent circuit in neuromorphic hardware modeling dendrites. We present a multi-compartment neuromorphic dendritic model that produces a multiplication-like effect using the shunting inhibition mechanism by varying leakage along the dendritic cable. Dendritic computation in neuromorphic architectures has the potential to increase complexity in single neurons and reduce the energy footprint for neural networks by enabling computation in the interconnect.
ACM International Conference Proceeding Series
Coordinate transformations are a fundamental operation that must be performed by any animal relying upon sensory information to interact with the external world. We present a neural network model that performs a coordinate transformation from the dragonfly eye's frame of reference to the body's frame of reference while hunting. We demonstrate that the model successfully calculates turns required for interception, and discuss how future work will compare our model with biological dragonfly neural circuitry and guide neural-inspired neuromorphic implementations of coordinate transformations.
Nanoscale
The magnetization patterns on three atomic layers thick islands of Co on Ru(0001) are studied by spin-polarized low-energy electron microscopy (SPLEEM). In-plane magnetized micrometer wide triangular Co islands are grown on Ru(0001). They present two different orientations correlated with two different stacking sequences which differ only in the last layer position. The stacking sequence determines the type of magnetization pattern observed: the hcp islands present very wide domain walls, while the fcc islands present domains separated by much narrower domain walls. The former is an extremely low in-plane anisotropy system. We estimate the in-plane magnetic anisotropy of the fcc regions to be 1.96 × 104 J m−3 and of the hcp ones to be 2.5 × 102 J m−3
ACM International Conference Proceeding Series
Coordinate transformations are a fundamental operation that must be performed by any animal relying upon sensory information to interact with the external world. We present a neural network model that performs a coordinate transformation from the dragonfly eye's frame of reference to the body's frame of reference while hunting. We demonstrate that the model successfully calculates turns required for interception, and discuss how future work will compare our model with biological dragonfly neural circuitry and guide neural-inspired neuromorphic implementations of coordinate transformations.
Physical Review Applied
Oscillatory devices have gained significant interest recently as key components of computing systems based on biomimetic neuronal spiking. An understanding of the time scales underlying the spiking is essential for engineering fast, controllable, low energy devices. However, we find that the intrinsic dynamics of these devices are difficult to properly characterize, as they can be heavily influenced by the external circuitry used to measure them. Here we demonstrate these challenges using a VO2 Mott oscillator with a sub-100 nm effective size, achieved using a nanogap cut in a metallic carbon nanotube electrode. Given the nanoscale thermal volume of this device, it would be expected to exhibit rapid oscillations. However, due to external parasitics present within commonly used current sources, we see orders of magnitude slower dynamics. Here, we outline methods for determining when measurements are dominated by extrinsic factors and discuss the operating conditions under which intrinsic oscillation frequencies may be observed.
Journal of Physical Chemistry A
Rare-earth terephthalic acid (BDC)-based metal-organic frameworks (MOFs) are promising candidate materials for acid gas separation and adsorption from flue gas streams. However, previous simulations have shown that acid gases (H2O, NO2, and SO2) react with the hydroxyl on the BDC linkers to form protonated acid gases as a potential degradation mechanism. Herein, gas-phase computational approaches were used to identify the formation energies of these secondary protonated acid gases across multiple BDC linker molecules. Formation energies for secondary protonated acid gases were evaluated using both density functional theory (DFT) and correlated wave function methods for varying BDC-gas reaction mechanisms. Upon validation of DFT to reproduce wave function calculation results, rotated conformational linkers and chemically functionalized BDC linkers with −OH, −NH2, and −SH were investigated. The calculations show that the rotational conformation affects the molecule stability. Double-functionalized BDC linkers, where two functional groups are substituted onto BDC, showed varied reaction energies depending on whether the functional groups donate or withdraw electrons from the aromatic system. Based on these results, BDC linker design must balance adsorption performance with degradation via linker dehydrogenation for the design of stable MOFs for acid gas separations.
Journal of Applied Physics
Chalcogenide thin films that undergo reversible phase changes show promise for use in next-generation nanophotonics, microelectronics, and other emerging technologies. One of the many studied compounds, Ge2Sb2Te5, has demonstrated several useful properties and performance characteristics. However, the efficacy of benchmark Ge2Sb2Te5 is restricted by amorphous phase thermal stability below ∼150 °C, limiting its potential use in high-temperature applications. In response, previous studies have added a fourth species (e.g., C) to sputter-deposited Ge2Sb2Te5, demonstrating improved thermal stability. Our current research confirms reported thermal stability enhancements and assesses the effects of carbon on crystalline phase radiation response. Through in situ transmission electron microscope irradiation studies, we examine the effect of C addition on the amorphization behavior of initially cubic and trigonal polycrystalline films irradiated using 2.8 MeV Au to various doses up to 1 × 1015 cm−2. It was found that increased C content reduces radiation tolerance of both cubic and trigonal phases.
Abstract not provided.
This report describes the structure and content of an open dataset created for the purpose of testing and validating PV module temperature prediction models and their parameters. The dataset contains the main environmental parameters that affect temperature: irradiance, ambient temperature, wind speed and down-welling infrared radiation, as well as measured back-of-module temperature.
IEEE Transactions on Nuclear Science
Radiation-hard high-voltage vertical GaN p-n diodes are being developed for use in power electronics subjected to ionizing radiation. We present a comparison of the measured and simulated photocurrent response of diodes exposed to ionizing irradiation with 70 keV and 20 MeV electrons at dose rates in the range of 1.4× 107 - 5.0× 108 rad(GaN)/s. The simulations correctly predict the trend in the measured steady-state photocurrent and agree with the experimental results within a factor of 2. Furthermore, simulations of the transient photocurrent response to dose rates with uniform and non-uniform ionization depth profiles uncover the physical processes involved that cannot be otherwise experimentally observed due to orders of magnitude larger RC time constant of the test circuit. The simulations were performed using an eXploratory Physics Development code developed at Sandia National Laboratories. The code offers the capability to include defect physics under more general conditions, not included in commercially available software packages, extending the applicability of the simulations to different types of radiation environments.
Abstract not provided.
Abstract not provided.
Journal of Computational Physics
For computational physics simulations, code verification plays a major role in establishing the credibility of the results by assessing the correctness of the implementation of the underlying numerical methods. In computational electromagnetics, surface integral equations, such as the method-of-moments implementation of the magnetic-field integral equation, are frequently used to solve Maxwell's equations on the surfaces of electromagnetic scatterers. These electromagnetic surface integral equations yield many code-verification challenges due to the various sources of numerical error and their possible interactions. In this paper, we provide approaches to separately measure the numerical errors arising from these different error sources. We demonstrate the effectiveness of these approaches for cases with and without coding errors.
The computational modeling of nearly incompressible materials is a difficult task for many numerical methods, and even after several decades of investigation, it is still an active research area. This report seeks to address the treatment of incompressible materials in meshfree methods using a synergistic combination of two treatments. The first treatment is an $\bar{F}$ method, where the decomposed dilatational and deviatoric parts are calculated over different smoothing domains. The second treatment “activates” additional nodes throughout the domain to increase the flexibility of the model. We implement this synergistic combination in the context of the reproducing kernel particle method (RKPM) and present results for the Cook’s membrane benchmark problem. The results are compared with those using the composite tet10 finite element with a volume-averaged J formulation. We show that the combined treatment is an effective way to deal with nearly incompressible materials in a meshfree framework and compares well with other highly-effective treatments.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nature Chemistry
Plasmonic heating by nanoparticles has been used to promote a range of chemical reactions. Now, thermoplasmonic activation has been applied to latent ruthenium catalysts, enabling olefin metathesis initiated by visible and infrared light. Additionally, the desire to harness light to drive chemical transformations has surely existed as long as the study of chemistry itself. In the earliest documented applications, light was used simply as a heat source — for example, in the distillation of liquids. Since that time, our knowledge of how light and matter interact has increased exponentially, with greater mechanistic and molecular understanding enabling modern photochemists to design molecules with a myriad of finely tuned optical properties for catalysis, biochemistry, optoelectronics and more. Nonetheless, the design and optimization of molecules to achieve specific optical properties is still challenging, and for some applications, a return to the ‘simplest’ transformation — that of light to heat — can offer a more efficient approach to achieve light-mediated chemical reactions. Now, writing in Nature Chemistry, Yossi Weizmann and colleagues describe a strategy for organic and polymer synthesis driven by the conversion of light to heat.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nature Microbiology
Lignocellulose forms plant cell walls, and its three constituent polymers, cellulose, hemicellulose and lignin, represent the largest renewable organic carbon pool in the terrestrial biosphere. Insights into biological lignocellulose deconstruction inform understandings of global carbon sequestration dynamics and provide inspiration for biotechnologies seeking to address the current climate crisis by producing renewable chemicals from plant biomass. Organisms in diverse environments disassemble lignocellulose, and carbohydrate degradation processes are well defined, but biological lignin deconstruction is described only in aerobic systems. It is currently unclear whether anaerobic lignin deconstruction is impossible because of biochemical constraints or, alternatively, has not yet been measured. We applied whole cell-wall nuclear magnetic resonance, gel-permeation chromatography and transcriptome sequencing to interrogate the apparent paradox that anaerobic fungi (Neocallimastigomycetes), well-documented lignocellulose degradation specialists, are unable to modify lignin. We find that Neocallimastigomycetes anaerobically break chemical bonds in grass and hardwood lignins, and we further associate upregulated gene products with the observed lignocellulose deconstruction. These findings alter perceptions of lignin deconstruction by anaerobes and provide opportunities to advance decarbonization biotechnologies that depend on depolymerizing lignocellulose.
This report describes the creation process and final content of a spectral irradiance dataset for Albuquerque, New Mexico accompanied by a set of spectral response measurements for modules deployed at the same location. The spectral irradiance measurements were made using horizontally mounted spectroradiometers; therefore, they represent global horizontal irradiance. The dataset combines non-continuous spectroradiometer and weather measurements from a two-year period into a single calendar year. The data files are accompanied by extensive metadata as well as example calculations and graphs to demonstrate the potential uses of this database. The spectral response measurements were carried out by the National Renewable Energy Laboratory using 12 commercial silicon modules types that are undergoing long-term evaluation at Sandia National Laboratories in Albuquerque.
Abstract not provided.
Microbiology Resource Announcements
Bassalto is a newly isolated phage of Mycobacterium smegmatis mc2155 from the campus grounds of Norfolk State University in Norfolk, VA. Bassalto belongs to the cluster B and subcluster B3 mycobacteriophages, based on the nucleotide composition and comparison to known mycobacteriophages.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Computational Physics
For computational physics simulations, code verification plays a major role in establishing the credibility of the results by assessing the correctness of the implementation of the underlying numerical methods. In computational electromagnetics, surface integral equations, such as the method-of-moments implementation of the magnetic-field integral equation, are frequently used to solve Maxwell's equations on the surfaces of electromagnetic scatterers. These electromagnetic surface integral equations yield many code-verification challenges due to the various sources of numerical error and their possible interactions. In this paper, we provide approaches to separately measure the numerical errors arising from these different error sources. We demonstrate the effectiveness of these approaches for cases with and without coding errors.