Publications

Results 88001–88200 of 96,771

Search results

Jump to search filters

Installation of adhesively bonded composites to repair carbon steel structure

Roach, D.; Rackow, Kirk; Dunn, Dennis

In the past decade, an advanced composite repair technology has made great strides in commercial aviation use. Extensive testing and analysis, through joint programs between the Sandia Labs FAA Airworthiness Assurance Center and the aviation industry, have proven that composite materials can be used to repair damaged aluminum structure. Successful pilot programs have produced flight performance history to establish the viability and durability of bonded composite patches as a permanent repair on commercial aircraft structures. With this foundation in place, efforts are underway to adapt bonded composite repair technology to civil structures. This paper presents a study in the application of composite patches on large trucks and hydraulic shovels typically used in mining operations. Extreme fatigue, temperature, erosive, and corrosive environments induce an array of equipment damage. The current weld repair techniques for these structures provide a fatigue life that is inferior to that of the original plate. Subsequent cracking must be revisited on a regular basis. It is believed that the use of composite doublers, which do not have brittle fracture problems such as those inherent in welds, will help extend the structure's fatigue life and reduce the equipment downtime. Two of the main issues for adapting aircraft composite repairs to civil applications are developing an installation technique for carbon steel structure and accommodating large repairs on extremely thick structures. This paper will focus on the first phase of this study which evaluated the performance of different mechanical and chemical surface preparation techniques. The factors influencing the durability of composite patches in severe field environments will be discussed along with related laminate design and installation issues.

More Details

Alternative separation of exchange and correlation in density-functional theory

Proposed for publication in Physical Review Letters.

Wills, Ann E.

It has recently been shown that local values of the conventional exchange energy per particle cannot be described by an analytic expansion in the density variation. Yet, it is known that the total exchange-correlation (XC) energy per particle does not show any corresponding nonanalyticity. Indeed, the nonanalyticity is here shown to be an effect of the separation into conventional exchange and correlation. We construct an alternative separation in which the exchange part is made well behaved by screening its long-ranged contributions, and the correlation part is adjusted accordingly. This alternative separation is as valid as the conventional one, and introduces no new approximations to the total XC energy. We demonstrate functional development based on this approach by creating and deploying a local-density-approximation-type XC functional. Hence, this work includes both the theory and the practical calculations needed to provide a starting point for an alternative approach towards improved approximations of the total XC energy.

More Details

Functional and structural failure mode overpressurization tests of 1:4-scale prestressed concrete containment vessel model

Hessheimer, Michael F.

A 1:4-scale model of a prestressed concrete containment vessel (PCCV), representative of a pressurized water reactor (PWR) plant in Japan, was constructed by NUPEC at Sandia National Laboratories from January 1997 through June, 2000. Concurrently, Sandia instrumented the model with nearly 1500 transducers to measure strain, displacement and forces in the model from prestressing through the pressure testing. The limit state test of the PCCV model, culminating in functional failure (i.e. leakage by cracking and liner tearing) was conducted in September, 2000 at Sandia National Laboratories. After inspecting the model and the data after the limit state test, it became clear that, other than liner tearing and leakage, structural damage was limited to concrete cracking and the overall structural response (displacements, rebar and tendon strains, etc.) was only slightly beyond yield. (Global hoop strains at the mid-height of the cylinder only reached 0.4%, approximately twice the yield strain in steel.) In order to provide additional structural response data, for comparison with inelastic response conditions, the PCCV model filled nearly full with water and pressurized to 3.6 times the design pressure, when a catastrophic rupture occurred preceded only briefly by successive tensile failure of several hoop tendons. This paper summarizes the results of these tests.

More Details

Carbon sequestration in Synechococcus Sp.: from molecular machines to hierarchical modeling

Proposed for publication in OMICS: A Journal of Integrative Biology, Vol. 6, No.4, 2002.

Heffelfinger, Grant S.; Faulon, Jean-Loup M.; Frink, Laura J.; Haaland, David M.; Hart, William E.; Lane, Todd L.; Plimpton, Steven J.; Roe, Diana C.; Timlin, Jerilyn A.; Martino, Anthony M.; Rintoul, Mark D.; Davidson, George S.

The U.S. Department of Energy recently announced the first five grants for the Genomes to Life (GTL) Program. The goal of this program is to ''achieve the most far-reaching of all biological goals: a fundamental, comprehensive, and systematic understanding of life.'' While more information about the program can be found at the GTL website (www.doegenomestolife.org), this paper provides an overview of one of the five GTL projects funded, ''Carbon Sequestration in Synechococcus Sp.: From Molecular Machines to Hierarchical Modeling.'' This project is a combined experimental and computational effort emphasizing developing, prototyping, and applying new computational tools and methods to elucidate the biochemical mechanisms of the carbon sequestration of Synechococcus Sp., an abundant marine cyanobacteria known to play an important role in the global carbon cycle. Understanding, predicting, and perhaps manipulating carbon fixation in the oceans has long been a major focus of biological oceanography and has more recently been of interest to a broader audience of scientists and policy makers. It is clear that the oceanic sinks and sources of CO(2) are important terms in the global environmental response to anthropogenic atmospheric inputs of CO(2) and that oceanic microorganisms play a key role in this response. However, the relationship between this global phenomenon and the biochemical mechanisms of carbon fixation in these microorganisms is poorly understood. The project includes five subprojects: an experimental investigation, three computational biology efforts, and a fifth which deals with addressing computational infrastructure challenges of relevance to this project and the Genomes to Life program as a whole. Our experimental effort is designed to provide biology and data to drive the computational efforts and includes significant investment in developing new experimental methods for uncovering protein partners, characterizing protein complexes, identifying new binding domains. We will also develop and apply new data measurement and statistical methods for analyzing microarray experiments. Our computational efforts include coupling molecular simulation methods with knowledge discovery from diverse biological data sets for high-throughput discovery and characterization of protein-protein complexes and developing a set of novel capabilities for inference of regulatory pathways in microbial genomes across multiple sources of information through the integration of computational and experimental technologies. These capabilities will be applied to Synechococcus regulatory pathways to characterize their interaction map and identify component proteins in these pathways. We will also investigate methods for combining experimental and computational results with visualization and natural language tools to accelerate discovery of regulatory pathways. Furthermore, given that the ultimate goal of this effort is to develop a systems-level of understanding of how the Synechococcus genome affects carbon fixation at the global scale, we will develop and apply a set of tools for capturing the carbon fixation behavior of complex of Synechococcus at different levels of resolution. Finally, because the explosion of data being produced by high-throughput experiments requires data analysis and models which are more computationally complex, more heterogeneous, and require coupling to ever increasing amounts of experimentally obtained data in varying formats, we have also established a companion computational infrastructure to support this effort as well as the Genomes to Life program as a whole.

More Details

Conversion of the Big Hill geological site characterization report to a three-dimensional model

Stein, Joshua S.; Rautman, Christopher A.

The Big Hill salt dome, located in southeastern Texas, is home to one of four underground oil-storage facilities managed by the U. S. Department of Energy Strategic Petroleum Reserve (SPR) Program. Sandia National Laboratories, as the geotechnical advisor to the SPR, conducts site-characterization investigations and other longer-term geotechnical and engineering studies in support of the program. This report describes the conversion of two-dimensional geologic interpretations of the Big Hill site into three-dimensional geologic models. The new models include the geometry of the salt dome, the surrounding sedimentary units, mapped faults, and the 14 oil storage caverns at the site. This work provides a realistic and internally consistent geologic model of the Big Hill site that can be used in support of future work.

More Details

Verification, validation, and predictive capability in computational engineering and physics

Bunge, Scott D.; Boyle, Timothy J.; Headley, Thomas J.; Kotula, Paul G.; Rodriguez, M.A.

Developers of computer codes, analysts who use the codes, and decision makers who rely on the results of the analyses face a critical question: How should confidence in modeling and simulation be critically assessed? Verification and validation (V&V) of computational simulations are the primary methods for building and quantifying this confidence. Briefly, verification is the assessment of the accuracy of the solution to a computational model. Validation is the assessment of the accuracy of a computational simulation by comparison with experimental data. In verification, the relationship of the simulation to the real world is not an issue. In validation, the relationship between computation and the real world, i.e., experimental data, is the issue.

More Details

Technical Safety Requirements for the Gamma Irradiation Facility (GIF)

Mahn, Jeffrey A.

This document provides the Technical Safety Requirements (TSR) for the Sandia National Laboratories Gamma Irradiation Facility (GIF). The TSR is a compilation of requirements that define the conditions, the safe boundaries, and the administrative controls necessary to ensure the safe operation of a nuclear facility and to reduce the potential risk to the public and facility workers from uncontrolled releases of radioactive or other hazardous materials. These requirements constitute an agreement between DOE and Sandia National Laboratories management regarding the safe operation of the Gamma Irradiation Facility.

More Details

Final Report of LDRD Project Number 34693: Building Conscious Machines Based Upon the Architecture of Visual Cortex in the Primate Brain

Buttram, Malcolm T.

Our research plan is two-fold: first, we have extended our biological model of bottom-up visual attention with several recently characterized cortical interactions that are known to be responsible for human performance in certain visual tasks, and second, we have used an eyetracking system for collecting human eye movement data, from which we can calibrate the new additions to the model. We acquired an infrared video eyetracking system, which we are using to record observers' eye position with high temporal (120Hz) and spatial ({+-} 0.25 deg visual angle) accuracy. We collected eye movement scan paths from observers as they view computer-generated fractals, rural and urban outdoor scenes, and overhead satellite imagery. We found that, with very high statistical significance (10 to 12 z-scores), the saliency model accurately predicts locations that human observers will find interesting. We adopted our model of short-range interactions among overlapping spatial orientation channels to better predict bottom-up stimulus-driven attention in humans. This enhanced model is even more accurate in its predictions of human observers' eye movements. We are currently incorporating biologically plausible long-range interactions among orientation channels, which will aid in the detection of elongated contours such as rivers, roads, airstrips, and other man-made structures.

More Details

Determining Optimal Location and Numbers of Sample Transects for Characterization of UXO Sites

Bilisoly, Roger L.; Mckenna, Sean A.

Previous work on sample design has been focused on constructing designs for samples taken at point locations. Significantly less work has been done on sample design for data collected along transects. A review of approaches to point and transect sampling design shows that transects can be considered as a sequential set of point samples. Any two sampling designs can be compared through using each one to predict the value of the quantity being measured on a fixed reference grid. The quality of a design is quantified in two ways: computing either the sum or the product of the eigenvalues of the variance matrix of the prediction error. An important aspect of this analysis is that the reduction of the mean prediction error variance (MPEV) can be calculated for any proposed sample design, including one with straight and/or meandering transects, prior to taking those samples. This reduction in variance can be used as a ''stopping rule'' to determine when enough transect sampling has been completed on the site. Two approaches for the optimization of the transect locations are presented. The first minimizes the sum of the eigenvalues of the predictive error, and the second minimizes the product of these eigenvalues. Simulated annealing is used to identify transect locations that meet either of these objectives. This algorithm is applied to a hypothetical site to determine the optimal locations of two iterations of meandering transects given a previously existing straight transect. The MPEV calculation is also used on both a hypothetical site and on data collected at the Isleta Pueblo to evaluate its potential as a stopping rule. Results show that three or four rounds of systematic sampling with straight parallel transects covering 30 percent or less of the site, can reduce the initial MPEV by as much as 90 percent. The amount of reduction in MPEV can be used as a stopping rule, but the relationship between MPEV and the results of excavation versus no-further-action decisions is site specific and cannot be calculated prior to the sampling. It may be advantageous to use the reduction in MPEV as a stopping rule for systematic sampling across the site that can then be followed by focused sampling in areas identified has having UXO during the systematic sampling. The techniques presented here provide answers to the questions of ''Where to sample?'' and ''When to stop?'' and are capable of running in near real time to support iterative site characterization campaigns.

More Details

Solidification Diagnostics for Joining and Microstructural Simulations

Robino, Charles V.; Hall, Aaron C.; Brooks, John A.; Headley, Thomas J.; Roach, R.A.

Solidification is an important aspect of welding, brazing, soldering, LENS fabrication, and casting. The current trend toward utilizing large-scale process simulations and materials response models for simulation-based engineering is driving the development of new modeling techniques. However, the effective utilization of these models is, in many cases, limited by a lack of fundamental understanding of the physical processes and interactions involved. In addition, experimental validation of model predictions is required. We have developed new and expanded experimental techniques, particularly those needed for in-situ measurement of the morphological and kinetic features of the solidification process. The new high-speed, high-resolution video techniques and data extraction methods developed in this work have been used to identify several unexpected features of the solidification process, including the observation that the solidification front is often far more dynamic than previously thought. In order to demonstrate the utility of the video techniques, correlations have been made between the in-situ observations and the final solidification microstructure. Experimental methods for determination of the solidification velocity in highly dynamic pulsed laser welds have been developed, implemented, and used to validate and refine laser welding models. Using post solidification metallographic techniques, we have discovered a previously unreported orientation relationship between ferrite and austenite in the Fe-Cr-Ni alloy system, and have characterized the conditions under which this new relationship develops. Taken together, the work has expanded both our understanding of, and our ability to characterize, solidification phenomena in complex alloy systems and processes.

More Details

Constructing Probability Boxes and Dempster-Shafer Structures

Oberkampf, William L.

This report summarizes a variety of the most useful and commonly applied methods for obtaining Dempster-Shafer structures, and their mathematical kin probability boxes, from empirical information or theoretical knowledge. The report includes a review of the aggregation methods for handling agreement and conflict when multiple such objects are obtained from different sources.

More Details

A Novel Microcombustor for Sensor and Thermal Energy Management Applications in Microsystems

Manginell, Ronald P.; Moorman, Matthew W.; Colburn, Christopher C.; Anderson, Lawrence F.; Gardner, Timothy J.; Mowery-Evans, Deborah L.; Clem, Paul G.; Margolis, Stephen B.

The microcombustor described in this report was developed primarily for thermal management in microsystems and as a platform for micro-scale flame ionization detectors (microFID). The microcombustor consists of a thin-film heater/thermal sensor patterned on a thin insulating membrane that is suspended from its edges over a silicon frame. This micromachined design has very low heat capacity and thermal conductivity and is an ideal platform for heating catalytic materials placed on its surface. Catalysts play an important role in this design since they provide a convenient surface-based method for flame ignition and stabilization. The free-standing platform used in the microcombustor mitigates large heat losses arising from large surface-to-volume ratios typical of the microdomain, and, together with the insulating platform, permit combustion on the microscale. Surface oxidation, flame ignition and flame stabilization have been demonstrated with this design for hydrogen and hydrocarbon fuels premixed with air. Unoptimized heat densities of 38 mW/mm{sup 2} have been achieved for the purpose of heating microsystems. Importantly, the microcombustor design expands the limits of flammability (Low as compared with conventional diffusion flames); an unoptimized LoF of 1-32% for natural gas in air was demonstrated with the microcombustor, whereas conventionally 4-16% observed. The LoF for hydrogen, methane, propane and ethane are likewise expanded. This feature will permit the use of this technology in many portable applications were reduced temperatures, lean fuel/air mixes or low gas flows are required. By coupling miniature electrodes and an electrometer circuit with the microcombustor, the first ever demonstration of a microFID utilizing premixed fuel and a catalytically-stabilized flame has been performed; the detection of -1-3% of ethane in hydrogen/air is shown. This report describes work done to develop the microcombustor for microsystem heating and flame ionization detection and includes a description of modeling and simulation performed to understand the basic operation of this device. Ancillary research on the use of the microcombustor in calorimetric gas sensing is also described where appropriate.

More Details

Making the Connection Between Microstructure and Mechanics

Holm, Elizabeth A.; Battaile, Corbett C.; Fang, H.E.; Buchheit, Thomas E.; Wellman, Gerald W.

The purpose of microstructural control is to optimize materials properties. To that end, they have developed sophisticated and successful computational models of both microstructural evolution and mechanical response. However, coupling these models to quantitatively predict the properties of a given microstructure poses a challenge. This problem arises because most continuum response models, such as finite element, finite volume, or material point methods, do not incorporate a real length scale. Thus, two self-similar polycrystals have identical mechanical properties regardless of grain size, in conflict with theory and observations. In this project, they took a tiered risk approach to incorporate microstructure and its resultant length scales in mechanical response simulations. Techniques considered include low-risk, low-benefit methods, as well as higher-payoff, higher-risk methods. Methods studied include a constitutive response model with a local length-scale parameter, a power-law hardening rate gradient near grain boundaries, a local Voce hardening law, and strain-gradient polycrystal plasticity. These techniques were validated on a variety of systems for which theoretical analyses and/or experimental data exist. The results may be used to generate improved constitutive models that explicitly depend upon microstructure and to provide insight into microstructural deformation and failure processes. Furthermore, because mechanical state drives microstructural evolution, a strain-enhanced grain growth model was coupled with the mechanical response simulations. The coupled model predicts both properties as a function of microstructure and microstructural development as a function of processing conditions.

More Details

Laser Safety and Hazardous Analysis for the ARES (Big Sky) Laser System

Augustoni, Arnold L.

A laser safety and hazard analysis was performed for the ARES laser system based on the 2000 version of the American National Standards Institute's (ANSI) Standard Z136.1,for Safe Use of Lasers and the 2000 version of the ANSI Standard Z136.6, for Safe Use of Lasers Outdoors. The ARES laser system is a Van/Truck based mobile platform, which is used to perform laser interaction experiments and tests at various national test sites.

More Details

Laser Safety and Hazard Analysis for the Trailer (B70) Based AURA Laser System

Augustoni, Arnold L.

A laser safety and hazard analysis was performed for the AURA laser system based on the 2000 version of the American National Standards Institute's (ANSI) Standard Z136.1, for ''Safe Use of Lasers'' and the 2000 version of the ANSI Standard Z136.6, for ''Safe Use of Lasers Outdoors''. The trailer based AURA laser system is a mobile platform, which is used to perform laser interaction experiments and tests at various national test sites. The trailer (B70) based AURA laser system is generally operated on the United State Air Force Starfire Optical Range (SOR) at Kirtland Air Force Base (KAFB), New Mexico. The laser is used to perform laser interaction testing inside the laser trailer as well as outside the trailer at target sites located at various distances from the exit telescope. In order to protect personnel, who work inside the Nominal Hazard Zone (NHZ), from hazardous laser emission exposures it was necessary to determine the Maximum Permissible Exposure (MPE) for each laser wavelength (wavelength bands) and calculate the appropriate minimum Optical Density (OD{sub min}) of the laser safety eyewear used by authorized personnel and the Nominal Ocular Hazard Distance (NOHD) to protect unauthorized personnel who may have violated the boundaries of the control area and enter into the laser's NHZ.

More Details

Opacity measurements of tamped NaBr samples heated by z-pinch X-rays

Journal of Quantitative Spectroscopy and Radiative Transfer

Bailey, James E.; Rochau, G.A.; Cuneo, M.E.

Laboratory measurements provide benchmark data for wavelength-dependent plasma opacities to assist inertial confinement fusion, astrophysics, and atomic physics research. There are several potential benefits to using z-pinch radiation for opacity measurements, including relatively large cm-scale lateral sample sizes and relatively-long 3-5 ns experiment durations. These features enhance sample uniformity. The spectrally resolved transmission through a CH-tamped NaBr foil was measured. The z-pinch produced the X-rays for both the heating source and backlight source. The (50+4) eV foil electron temperature and (3±1) × 1021 cm-3 foil electron density were determined by analysis of the Na absorption features. LTE and NLTE opacity model calculations of the n=2 to 3, 4 transitions in bromine ionized into the M-shell are in reasonably good agreement with the data.

More Details

Computational Algorithms for Device-Circuit Coupling

Gardner, Timothy J.; Mclaughlin, Linda I.; Mowery-Evans, Deborah L.

Circuit simulation tools (e.g., SPICE) have become invaluable in the development and design of electronic circuits. Similarly, device-scale simulation tools (e.g., DaVinci) are commonly used in the design of individual semiconductor components. Some problems, such as single-event upset (SEU), require the fidelity of a mesh-based device simulator but are only meaningful when dynamically coupled with an external circuit. For such problems a mixed-level simulator is desirable, but the two types of simulation generally have different (sometimes conflicting) numerical requirements. To address these considerations, we have investigated variations of the two-level Newton algorithm, which preserves tight coupling between the circuit and the partial differential equations (PDE) device, while optimizing the numerics for both.

More Details

Radiation-Induced Prompt Photocurrents in Microelectronics: Physics

Dodd, Paul E.; Vizkelethy, Gyorgy V.; Walsh, David S.; Buller, Daniel L.; Doyle, Barney L.

The effects of photocurrents in nuclear weapons induced by proximal nuclear detonations are well known and remain a serious hostile environment threat for the US stockpile. This report describes the final results of an LDRD study of the physical phenomena underlying prompt photocurrents in microelectronic devices and circuits. The goals of this project were to obtain an improved understanding of these phenomena, and to incorporate improved models of photocurrent effects into simulation codes to assist designers in meeting hostile radiation requirements with minimum build and test cycles. We have also developed a new capability on the ion microbeam accelerator in Sandia's Ion Beam Materials Research Laboratory (the Transient Radiation Microscope, or TRM) to supply ionizing radiation in selected micro-regions of a device. The dose rates achieved in this new facility approach those possible with conventional large-scale dose-rate sources at Sandia such as HERMES III and Saturn. It is now possible to test the physics and models in device physics simulators such as Davinci in ways not previously possible. We found that the physical models in Davinci are well suited to calculating prompt photocurrents in microelectronic devices, and that the TRM can reproduce results from conventional large-scale dose-rate sources in devices where the charge-collection depth is less than the range of the ions used in the TRM.

More Details

Self Organization of Software LDRD Final Report

Osbourn, Gordon C.

We are currently exploring and developing a new statistical mechanics approach to designing self organizing and self assembling systems that is unique to SNL. The primary application target for this ongoing research is the development of new kinds of nanoscale components and hardware systems. However, a surprising out of the box connection to software development is emerging from this effort. With some amount of modification, the collective behavior physics ideas for enabling simple hardware components to self organize may also provide design methods for a new class of software modules. Large numbers of these relatively small software components, if designed correctly, would be able to self assemble into a variety of much larger and more complex software systems. This self organization process would be steered to yield desired sets of system properties. If successful, this would provide a radical (disruptive technology) path to developing complex, high reliability software unlike any known today. The special work needed to evaluate this high risk, high payoff opportunity does not fit well into existing SNL funding categories, as it is well outside of the mainstreams of both conventional software development practices and the nanoscience research area that spawned it. We proposed a small LDRD effort aimed at appropriately generalizing these collective behavior physics concepts and testing their feasibility for achieving the self organization of large software systems. Our favorable results motivate an expanded effort to fully develop self-organizing software as a new technology.

More Details

Cold War Context Statement: Sandia National Laboratories, California Site

Ullrich, Rebecca A.

This document was prepared to support the Department of Energy's compliance with Sections 106 and 110 of the National Historic Preservation Act. It provides an overview of the historic context in which Sandia National Laboratories/California was created and developed. Establishing such a context allows for a reasonable and reasoned historical assessment of Sandia National Laboratories/California properties. The Cold War arms race provides the primary historical context for the SNL/CA built environment.

More Details

Measurement and Modeling of Energetic Material Mass Transfer to Soil Pore Water - Project CP-1227 Annual Technical Report

Phelan, James M.; Webb, Stephen W.; Romero, Joseph V.; Barnett, James B.; Bohlken, Fawn A.

Military test and training ranges operate with live fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low order detonations also disperse solid phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g. weather and geostratigraphy) contribute to groundwater pollution impacts. This report documents interim results of experimental work evaluating mass transfer processes from solid phase energetics to soil pore water. The experimental work is used as a basis to formulate a mass transfer numerical model, which has been incorporated into the porous media simulation code T2TNT. Experimental work to date with Composition B explosive has shown that column tests typically produce effluents near the temperature dependent solubility limits for RDX and TNT. The influence of water flow rate, temperature, porous media saturation and mass loading is documented. The mass transfer model formulation uses a mass transfer coefficient and surface area function and shows good agreement with the experimental data. Continued experimental work is necessary to evaluate solid phase particle size and 2-dimensional effects, and actual low order detonation debris. Simulation model improvements will continue leading to a capability to complete screening assessments of the impacts of military range operations on groundwater quality.

More Details

Modification of TOUGH2 for Enhanced Coal Bed Methane Simulations

Webb, Stephen W.

The GEO-SEQ Project is investigating methods for geological sequestration of CO{sub 2}. This project, which is directed by LBNL and includes a number of other industrial, university, and National Laboratory partners, is evaluating computer simulation models including TOUGH2. One of the problems to be considered is Enhanced Coal Bed Methane (ECBM) recovery. In this scenario, CO2 is pumped into methane-rich coal beds. Due to adsorption processes, the CO2 is sorbed onto the coal, which displaces the previously sorbed methane (CH4). The released methane can then be recovered, at least partially offsetting the cost of CO2 sequestration. Modifications have been made to the EOS7R equation of state in TOUGH2 to include the extended Langmuir isotherm for sorbing gases, including the change in porosity associated with the sorbed gas mass. Comparison to hand calculations for pure gas and binary mixtures shows very good agreement. Application to a CO{sub 2} well injection problem given by Law et al. (2002) shows good agreement considering the differences in the equations of state.

More Details

Miniature Sensors for Biological Warfare Agents using Fatty Acid Profiles: LDRD 10775 Final Report

Mowry, Curtis D.; Morgan, Christine A.; Theisen, Lisa A.; Trudell, Daniel E.; Martinez, Jesus I.

Rapid detection and identification of bacteria and other pathogens is important for many civilian and military applications. The taxonomic significance, or the ability to differentiate one microorganism from another, using fatty acid content and distribution is well known. For analysis fatty acids are usually converted to fatty acid methyl esters (FAMEs). Bench-top methods are commercially available and recent publications have demonstrated that FAMEs can be obtained from whole bacterial cells in an in situ single-step pyrolysis/methylation analysis. This report documents the progress made during a three year Laboratory Directed Research and Development (LDRD) program funded to investigate the use of microfabricated components (developed for other sensing applications) for the rapid identification of bioorganisms based upon pyrolysis and FAME analysis. Components investigated include a micropyrolyzer, a microGC, and a surface acoustic wave (SAW) array detector. Results demonstrate that the micropyrolyzer can pyrolyze whole cell bacteria samples using only milliwatts of power to produce FAMEs from bacterial samples. The microGC is shown to separate FAMEs of biological interest, and the SAW array is shown to detect volatile FAMEs. Results for each component and their capabilities and limitations are presented and discussed. This project has produced the first published work showing successful pyrolysis/methylation of fatty acids and related analytes using a microfabricated pyrolysis device.

More Details

Tracking Honey Bees Using LIDAR (Light Detection and Ranging) Technology

Bender, Susan F.; Rodacy, Philip J.; Schmitt, Randal L.; Hargis, Philip J.; Johnson, Mark S.; Klarkowski, James R.; Magee, Glen I.; Bender, Gary L.

The Defense Advanced Research Projects Agency (DARPA) has recognized that biological and chemical toxins are a real and growing threat to troops, civilians, and the ecosystem. The Explosives Components Facility at Sandia National Laboratories (SNL) has been working with the University of Montana, the Southwest Research Institute, and other agencies to evaluate the feasibility of directing honeybees to specific targets, and for environmental sampling of biological and chemical ''agents of harm''. Recent work has focused on finding and locating buried landmines and unexploded ordnance (UXO). Tests have demonstrated that honeybees can be trained to efficiently and accurately locate explosive signatures in the environment. However, it is difficult to visually track the bees and determine precisely where the targets are located. Video equipment is not practical due to its limited resolution and range. In addition, it is often unsafe to install such equipment in a field. A technology is needed to provide investigators with the standoff capability to track bees and accurately map the location of the suspected targets. This report documents Light Detection and Ranging (LIDAR) tests that were performed by SNL. These tests have shown that a LIDAR system can be used to track honeybees. The LIDAR system can provide both the range and coordinates of the target so that the location of buried munitions can be accurately mapped for subsequent removal.

More Details

SIERRA Framework Version 3: Transfer Services Design and Use

Stewart, James R.

This paper presents a description of the SIERRA Framework Version 3 parallel transfer operators. The high-level design including object interrelationships, as well as requirements for their use, is discussed. Transfer operators are used for moving field data from one computational mesh to another. The need for this service spans many different applications. The most common application is to enable loose coupling of multiple physics modules, such as for the coupling of a quasi-statics analysis with a thermal analysis. The SIERRA transfer operators support the transfer of nodal and element fields between meshes of different, arbitrary parallel decompositions. Also supplied are ''copy'' transfer operators for efficient transfer of fields between identical meshes. A ''copy'' transfer operator is also implemented for constraint objects. Each of these transfer operators is described. Also, two different parallel algorithms are presented for handling the geometric misalignment between different parallel-distributed meshes.

More Details

Implementation of a High Throughput Variable Decimation Pane Filter Using the Xilinx System Generator

Dubbert, Dale F.

In a Synthetic Aperture Radar (SAR) system, the purpose of the receiver is to process incoming radar signals in order to obtain target information and ultimately construct an image of the target area. Incoming raw signals are usually in the microwave frequency range and are typically processed with analog circuitry, requiring hardware designed specifically for the desired signal processing operations. A more flexible approach is to process the signals in the digital domain. Recent advances in analog-to-digital converter (ADC) and Field Programmable Gate Array (FPGA) technology allow direct digital processing of wideband intermediate frequency (IF) signals. Modern ADCs can achieve sampling rates in excess of 1GS/s, and modern FPGAs can contain millions of logic gates operating at frequencies over 100 MHz. The combination of these technologies is necessary to implement a digital radar receiver capable of performing high speed, sophisticated and scalable DSP designs that are not possible with analog systems. Additionally, FPGA technology allows designs to be modified as the design parameters change without the need for redesigning circuit boards, potentially saving both time and money. For typical radars receivers, there is a need for operation at multiple ranges, which requires filters with multiple decimation rates, i.e., multiple bandwidths. In previous radar receivers, variable decimation was implemented by switching between SAW filters to achieve an acceptable filter configuration. While this method works, it is rather ''brute force'' because it duplicates a large amount of hardware and requires a new filter to be added for each IF bandwidth. By implementing the filter digitally in FPGAs, a larger number of decimation values (and consequently a larger number of bandwidths) can be implemented with no need for extra components. High performance, wide bandwidth radar systems also place high demands on the DSP throughput of a given digital receiver. In such applications, the maximum clock frequency of a given FPGA is not adequate to support the required data throughput. This problem can be overcome by employing a parallel implementation of the pane filter. The parallel pane filter uses a polyphase parallelization technique to achieve an aggregate data rate which is twice that of the FPGA clock frequency. This is achieved at the expense of roughly doubling the FPGA resource usage.

More Details

Accident Conditions versus Regulatory Test for NRC-Approved UF6 Packages

Mills, G.S.; Ammerman, Douglas J.; Lopez Mestre, Carlos L.

The Nuclear Regulatory Commission (NRC) approves new package designs for shipping fissile quantities of UF{sub 6}. Currently there are three packages approved by the NRC for domestic shipments of fissile quantities of UF{sub 6}: NCI-21PF-1; UX-30; and ESP30X. For approval by the NRC, packages must be subjected to a sequence of physical tests to simulate transportation accident conditions as described in 10 CFR Part 71. The primary objective of this project was to relate the conditions experienced by these packages in the tests described in 10 CFR Part 71 to conditions potentially encountered in actual accidents and to estimate the probabilities of such accidents. Comparison of the effects of actual accident conditions to 10 CFR Part 71 tests was achieved by means of computer modeling of structural effects on the packages due to impacts with actual surfaces, and thermal effects resulting from test and other fire scenarios. In addition, the likelihood of encountering bodies of water or sufficient rainfall to cause complete or partial immersion during transport over representative truck routes was assessed. Modeled effects, and their associated probabilities, were combined with existing event-tree data, plus accident rates and other characteristics gathered from representative routes, to derive generalized probabilities of encountering accident conditions comparable to the 10 CFR Part 71 conditions. This analysis suggests that the regulatory conditions are unlikely to be exceeded in real accidents, i.e. the likelihood of UF{sub 6} being dispersed as a result of accident impact or fire is small. Moreover, given that an accident has occurred, exposure to water by fire-fighting, heavy rain or submersion in a body of water is even less probable by factors ranging from 0.5 to 8E-6.

More Details

Nonlinear programming strategies for source detection of municipal water networks

van Bloemen Waanders, Bart G.; van Bloemen Waanders, Bart G.; Bartlett, Roscoe B.

Increasing concerns for the security of the national infrastructure have led to a growing need for improved management and control of municipal water networks. To deal with this issue, optimization offers a general and extremely effective method to identify (possibly harmful) disturbances, assess the current state of the network, and determine operating decisions that meet network requirements and lead to optimal performance. This paper details an optimization strategy for the identification of source disturbances in the network. Here we consider the source inversion problem modeled as a nonlinear programming problem. Dynamic behavior of municipal water networks is simulated using EPANET. This approach allows for a widely accepted, general purpose user interface. For the source inversion problem, flows and concentrations of the network will be reconciled and unknown sources will be determined at network nodes. Moreover, intrusive optimization and sensitivity analysis techniques are identified to assess the influence of various parameters and models in the network in a computational efficient manner. A number of numerical comparisons are made to demonstrate the effectiveness of various optimization approaches.

More Details

Dynamic self-assembly of hierarchical software structures/systems

Osbourn, Gordon C.; Osbourn, Gordon C.; Bouchard, Ann M.

We present initial results on achieving synthesis of complex software systems via a biophysics-emulating, dynamic self-assembly scheme. This approach offers novel constructs for constructing large hierarchical software systems and reusing parts of them. Sets of software building blocks actively participate in the construction and subsequent modification of the larger-scale programs of which they are a part. The building blocks interact through a software analog of selective protein-protein bonding. Self-assembly generates hierarchical modules (including both data and executables); creates software execution pathways; and concurrently executes code via the formation and release of activity triggering bonds. Hierarchical structuring is enabled through encapsulants that isolate populations of building block binding sites. The encapsulated populations act as larger-scale building blocks for the next hierarchy level. Encapsulant populations are dynamic, as their contents can move in and out. Such movement changes the populations of interacting sites and also modifies the software execution. ''External overrides'', analogous to protein phosphorylation, temporarily switch off undesired subsets of behaviors (code execution, data access/modification) of other structures. This provides a novel abstraction mechanism for code reuse. We present an implemented example of dynamic self-assembly and present several alternative strategies for specifying goals and guiding the self-assembly process.

More Details

Dynamic probe of dust wakefield interactions using constrained collisions

Proposed for publication in Physical Review E.

Hebner, Gregory A.; Hebner, Gregory A.; Riley, Merle E.

The magnitude and the structure of the ion-wakefield potential below a negatively charged dust particle levitated in the plasma-sheath region have been determined. Attractive and repulsive components of the interaction force were extracted from a trajectory analysis of low-energy dust collisions in a well-defined electrostatic potential, which constrained the dynamics of the collisions to be one dimensional. The peak attraction was on the order of 100 fN. The structure of the ion-wakefield-induced attractive potential was significantly different from a screened-Coulomb repulsive potential.

More Details

Materials for freeform fabrication of GHz tunable dielectric photonic crystals

Proposed for publication in the Materials Research Society Conference Proceedings held June 3, 2003.

Clem, Paul G.; Clem, Paul G.; Niehaus, Michael K.; Cesarano, Joseph C.; Lin, Shawn-Yu L.

Photonic crystals are of interest for GHz transmission applications, including rapid switching, GHz filters, and phased-array technology. 3D fabrication by Robocasting enables moldless printing of high solid loading slurries into structures such as the ''woodpile'' structures used to fabricate dielectric photonic band gap crystals. In this work, tunable dielectric materials were developed and printed into woodpile structures via solid freeform fabrication (SFF) toward demonstration of tunable photonic crystals. Barium strontium titanate ceramics possess interesting electrical properties including high permittivity, low loss, and high tunability. This paper discusses the processing route and dielectric characterization of (BaxSr1-XTiO3):MgO ceramic composites, toward fabrication of tunable dielectric photonic band gap crystals.

More Details

Solid-state lighting :lamp targets and implications for the semiconductor chip

Tsao, Jeffrey Y.; Tsao, Jeffrey Y.

Once again GaAs MANTECH (with III-Vs Review acting as media sponsor) promises to deliver high quality papers covering all aspects of compound semiconductor manufacturing, with speakers from leading-edge equipment, epiwafer, and device suppliers. Since its launch in 1986, GaAs MANTECH has consistently been one of the highlight events of the conference calendar. Coverage includes all compound-based semiconductors, not just GaAs. With an excellent technical program comprising of almost 80 papers and expanded workshop sessions, the 2003 event should prove the best ever. As in previous years, an Interactive Forum and Ugly Picture Contest will be included. A major attraction will be the associated exhibition, with more than 70 suppliers expected to participate.

More Details

Examining the effects of variability in short time scale demands on solute transport

Mckenna, Sean A.; Mckenna, Sean A.; Tidwell, Vincent C.

Variations in water use at short time scales, seconds to minutes, produce variation in transport of solutes through a water supply network. However, the degree to which short term variations in demand influence the solute concentrations at different locations in the network is poorly understood. Here we examine the effect of variability in demand on advective transport of a conservative solute (e.g. chloride) through a water supply network by defining the demand at each node in the model as a stochastic process. The stochastic demands are generated using a Poisson rectangular pulse (PRP) model for the case of a dead-end water line serving 20 homes represented as a single node. The simple dead-end network model is used to examine the variation in Reynolds number, the proportion of time that there is no flow (i.e., stagnant conditions, in the pipe) and the travel time defined as the time for cumulative demand to equal the volume of water in 1000 feet of pipe. Changes in these performance measures are examined as the fine scale demand functions are aggregated over larger and larger time scales. Results are compared to previously developed analytical expressions for the first and second moments of these three performance measures. A new approach to predict the reduction in variance of the performance measures based on perturbation theory is presented and compared to the results of the numerical simulations. The distribution of travel time is relatively consistent across time scales until the time step approaches that of the travel time. However, the proportion of stagnant flow periods decreases rapidly as the simulation time step increases. Both sets of analytical expressions are capable of providing adequate, first-order predictions of the simulation results.

More Details

Review of low-flow bladder pump and high-volume air piston pump groundwater sampling systems at Sandia National Laboratories, New Mexico

Collins, Sue S.; Collins, Sue S.; Bailey, Gary A.; Jackson, Timmie O.

Since 1996, Sandia National Laboratories, New Mexico (SNL/NM) has run both a portable high-volume air-piston pump system and a dedicated, low-flow bladder pump system to collect groundwater samples. The groundwater contaminants of concern at SNL/NM are nitrate and the volatile organic compounds trichloroethylene (TCE) and tetrachloethene (PCE). Regulatory acceptance is more common for the high-volume air piston pump system, especially for programs like SNL/NM's, which are regulated under the Resource Conservation and Recovery Act (RCRA). This paper describes logistical and analytical results of the groundwater sampling systems used at SNL/NM. With two modifications to the off-the-shelf low-flow bladder pump, SNL/NM consistently operates the dedicated low-flow system at depths greater than 450 feet below ground surface. As such, the low-flow sampling system requires fewer personnel, less time and materials, and generates less purge and decontamination water than does the high-volume system. However, the bladder pump cannot work in wells with less than 4 feet of water. A review of turbidity and laboratory analytical results for TCE, PCE, and chromium (Cr) from six wells highlight the affect or lack of affects the sampling systems have on groundwater samples. In the PVC wells, turbidity typically remained < 5 nephelometric turbidity units (NTU) regardless of the sampling system. In the wells with a stainless steel screen, turbidity typically remained < 5 NTU only with the low-flow system. When the high-volume system was used, the turbidity and Cr concentration typically increased an order of magnitude. TCE concentrations at two wells did not appear to be sensitive to the sampling method used. However, PCE and TCE concentrations dropped an order of magnitude when the high-volume system was used at two other wells. This paper recommends that SNL/NM collaborate with other facilities with similar groundwater depths, continue to pursue regulatory approval for using dedicated the lowflow system, and review data for sample system affects on nitrate concentrations.

More Details

Dynamics of a complex quantum magnet

Proposed for publication in Physical Review Letters.

Landry, James W.; Landry, James W.

We have computed the low energy quantum states and low frequency dynamical susceptibility of complex quantum spin systems in the limit of strong interactions, obtaining exact results for system sizes enormously larger than accessible previously. The ground state is a complex superposition of a substantial fraction of all the classical ground states, and yet the dynamical susceptibility exhibits sharp resonances reminiscent of the behavior of single spins. These results show that strongly interacting quantum systems can organize to generate coherent excitations and shed light on recent experiments demonstrating that coherent excitations are present in a disordered spin liquid. The dependence of the energy spectra on system size differs qualitatively from that of the energy spectra of random undirected bipartite graphs with similar statistics, implying that strong interactions are giving rise to these unusual spectral properties.

More Details

Effect of non-exponential and multi-exponential decay behavior on the performance of the direct exponential curve resolution algorithm (DECRA) in NMR investigations

Journal of Chemometrics

Alam, Todd M.; Alam, Mary K.

The effect of non-exponential and multi-exponential decay or relaxation behavior on the performance of the direct exponential curve resolution algorithm (DECRA) is investigated through a series of numerical simulations. Three different combinations of decay or relaxation behavior were investigated through DECRA analysis of simulated pulse gradient spin echo (PGSE) NMR diffusion spectra that contained the combination of two individual components. The diffusion decay behavior of one component was described by a single-exponential decay, while the second component was described by either (1) a multi-exponential decay, (2) a decay behavior described by the empirical Kohlrausch-Williams-Watts (KWW) relation or (3) a multi-exponential decay behavior correlated with variations in the NMR spectral line shape. The magnitudes and types of errors produced during the DECRA analysis of spectral data with deviations from a pure single-exponential decay behavior are presented. It is demonstrated that the deviation from single-exponential decay impacts the resulting calculated line shapes, the calculated relative concentrations and the quantitative estimation of the decay or relaxation time constants of both components present in the NMR spectra. Copyright © 2004 John Wiley & Sons, Ltd.

More Details

Foam structure :from soap froth to solid foams

Proposed for publication in (MRS) Materials Research Society.

Kraynik, Andrew M.; Kraynik, Andrew M.

The properties of solid foams depend on their structure, which usually evolves in the fluid state as gas bubbles expand to form polyhedral cells. The characteristic feature of foam structure-randomly packed cells of different sizes and shapes-is examined in this article by considering soap froth. This material can be modeled as a network of minimal surfaces that divide space into polyhedral cells. The cell-level geometry of random soap froth is calculated with Brakke's Surface Evolver software. The distribution of cell volumes ranges from monodisperse to highly polydisperse. Topological and geometric properties, such as surface area and edge length, of the entire foam and individual cells, are discussed. The shape of struts in solid foams is related to Plateau borders in liquid foams and calculated for different volume fractions of material. The models of soap froth are used as templates to produce finite element models of open-cell foams. Three-dimensional images of open-cell foams obtained with x-ray microtomography allow virtual reconstruction of skeletal structures that compare well with the Surface Evolver simulations of soap-froth geometry.

More Details

Changing the diffusion mechanism of ge-si dimers on si(001) using an electric field

Physical Review Letters

Swartzentruber, Brian S.; Sanders, Lani M.; Stumpf, Roland R.; Mattsson, Thomas M.

We change the diffusion mechanism of adsorbed Ge-Si dimers on Si(001) using the electric field of a scanning tunneling microscope tip. By comparing the measured field dependence with first-principles calculations we conclude that, in negative field, i.e., when electrons are attracted towards the vacuum, the dimer diffuses as a unit, rotating as it translates, whereas, in positive field the dimer bond is substantially stretched at the transition state as it slides along the substrate. Furthermore, the active mechanism in positive fields facilitates intermixing of Ge in the Si lattice, whereas intermixing is suppressed in negative fields. © 2003 The American Physical Society.

More Details

Fair share on high performance computing systems: What does fair really mean?

Proceedings - CCGrid 2003: 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid

Kleban, S.D.; Clearwater, Scott H.

We report on a performance evaluation of a Fair Share system at the ASCI Blue Mountain supercomputer cluster. We study the impacts of share allocation under Fair Share on wait times and expansion factor. We also measure the Service Ratio, a typical figure of merit for Fair Share systems, with respect to a number of job parameters. We conclude that Fair Share does little to alter important performance metrics such as expansion factor. This leads to the question of what Fair Share means on cluster machines. The essential difference between Fair Share on a uni-processor and a cluster is that the workload on a cluster is not fungible in space or time. We find that cluster machines must be highly utilized and support checkpointing in order for Fair Share to function more closely to the spirit in which it was originally developed. © 2003 IEEE.

More Details

A level set approach to 3D mold filling of newtonian fluids

Proceedings of the ASME/JSME Joint Fluids Engineering Conference

Baer, Thomas A.; Noble, David R.; Rao, Rekha R.; Grillet, Anne M.

Filling operations, in which a viscous fluid displaces a gas in a complex geometry, occur with surprising frequency in many manufacturing processes. Difficulties in generating accurate models of these processes involve accurately capturing the interfacial boundary as it undergoes large motions and deformations, preventing dispersion and mass-loss during the computation, and robustly accounting for the effects of surface tension and wetting phenomena. This paper presents a numerical capturing algorithm using level set theory and finite element approximation. Important aspects of this work are addressing issues of mass-conservation and the presence of wetting effects. We have applied our methodology to a three-dimension model of a complicated filling problem. The simulated results are compared to experimental flow visualization data taken for filling of UCON oil in the identical geometry. Comparison of simulation and experiment indicates that the simulation conserved mass adequately and the simulated interface shape was in approximate agreement with experiment. Differences seen were largely attributed to inaccuracies in the wetting line model.

More Details

In Situ Monitoring of Vapor Phase TCE Using a Chemiresistor Microchemical Sensor

Ground Water Monitoring and Remediation

Ho, Clifford K.; Lohrstorfer, Charles F.

A chemiresistor microchemical sensor has been developed to detect and monitor volatile organic compounds in unsaturated and saturated subsurface environments. A controlled study was conducted at the HAZMAT Spill Center at the Nevada Test Site, where the sensor was tested under a range of temperature, moisture, and trichloroethylene (TCE) concentrations. The sensor responded rapidly when exposed to TCE placed in sand, and it also responded to decreases in TCE vapor concentration when clean air was vented through the system. Variations in temperature and water vapor concentration impacted baseline chemiresistor signals, but at high TCE concentrations the sensor response was dominated by the TCE exposure. Test results showed that the detection limit of the chemiresistor to TCE vapor in the presence of fluctuating environmental variables (i.e., temperature and water vapor concentration) was on the order of 1000 parts per million by volume, which is about an order of magnitude higher than values obtained in controlled laboratory environments. Automated temperature control and preconcentration is recommended to improve the stability and sensitivity of the chemiresistor sensor.

More Details

Mechanistic modeling of fingering, nonmonotonicity, fragmentation, and pulsation within gravity/buoyant destabilized two-phase/unsaturated flow

Water Resources Research

Glass, Robert J.; Yarrington, Lane Y.

Fingering, nonmonotonicity, fragmentation, and pulsation within gravity/buoyant destabilized two-phase/unsaturated flow systems has been widely observed with examples in homogeneous to heterogeneous porous media, in single fractures to fracture networks, and for both wetting and nonwetting invasion. To model this phenomena, we consider a mechanistic approach based on forms of modified invasion percolation (MIP) that include gravity, the influence of the local interfacial curvature along the phase-phase interface, and the simultaneous invasion and reinvasion of both wetting and nonwetting fluids. We present example simulations and compare them to experimental data for three very different situations: (1) downward gravity-driven fingering of water into a dry, homogeneous, water-wettable, porous medium; (2) upward buoyancy-driven migration of gas within a water saturated, heterogeneous, water-wettable, porous medium; and (3) downward gravity-driven fingering of water into a dry, water-wettable, rough-walled fracture.

More Details

On the porous continuum-scale modeling of gravity-driven fingers in unsaturated materials: Numerical solution of a hypodiffusive governing equation that incorporates a hold-back-pile-up effect

Water Resources Research

Eliassi, Mehdi E.; Glass, Robert J.

We consider the use of a hypodiffusive governing equation (HDE) for the porous-continuum modeling of gravity-driven fingers (GDF) as occur in initially dry, highly nonlinear, and hysteretic porous media. In addition to the capillary and gravity terms within the traditional Richards equation, the HDE contains a hypodiffusive term that models an experimentally observed hold-back-pile-up (HBPU) effect and thus imparts nonmonotonicity at the wetting front. In its dimensionless form the HDE contains the dimensionless hypodiffusion number, NHD. As NHD increases, one-dimensional (1D) numerical solutions transition from monotonic to nonmonotonic. Considering the experimentally observed controls on GDF occurrence, as either the initial moisture content and applied flux increase or the material nonlinearity decreases, solutions undergo the required transition back to monotonic. Additional tests for horizontal imbibition and capillary rise show the HDE to yield the required monotonie response but display sharper fronts for NHD > 0. Finally, two-dimensional (2D) numerical solutions illustrate that in parameter space where the 1D HDE yields nonmonotonicity, in 2D it forms nonmonotonic GDF.

More Details

Fracture behavior of Lennard-Jones glasses

Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics

Lorenz, Christian D.; Stevens, Mark J.

The fracture behavior of binary Lennard-Jones (LJ) glasses is studied by extensive molecular dynamics simulations. These LJ glasses represent a nonbond limit of polymer network glasses. We determine that the low strain behavior of the LJ and polymer glasses is similar. Two different LJ glasses are fractured under tensile strain without any preexisting crack. Void formation and resulting growth as strain increases is the mechanism through which the system fails. Void formation initiates at the yield strain of [Formula presented] which is approximately the same strain at which the yielding behavior is first observed in cross-linked network models of polymer adhesives. The yield stress increased only by small amounts with increased strain rate and with increased system size (from [Formula presented] atoms to [Formula presented] atoms). Within the ranges tested, the stress-strain behavior of these systems is independent of the temperature drop during quench and the initial molecular configuration. © 2003 The American Physical Society.

More Details

Degenerate type I nanosecond optical parametric oscillators

Journal of the Optical Society of America B: Optical Physics

Smith, A.V.; Armstrong, Darrell J.; Phillips, Mark C.

We present numerical modeling and laboratory studies of degenerate type I nanosecond optical parametric oscillators. Because the signal and idler waves are identical and parametric gain is phase sensitive, their round-trip phase is a critical parameter. We show that signal spectrum, transverse mode, and conversion efficiency are all strongly influenced by this phase. We also examine the influence of signal-wave injection seedine and phase-velocity mismatch. © 2003 Optical Society of America.

More Details

Measurement of attractive interactions produced by the ion wakefield in dusty plasmas using a constrained collision geometry

Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics

Hebner, Gregory A.; Riley, Merle E.

Plasma dust particle interactions, charges, and screening lengths are derived from measurements of time-dependent particle positions in a simplified geometry. The magnitude and structure of the ion wakefield potential below a negatively charged dust particle levitated in the plasma sheath region were measured as functions of the pressure and interparticle spacing. Attractive and repulsive components of the interaction force were extracted from a trajectory analysis of low-energy dust collisions between different mass particles in a well-defined electrostatic potential that constrained the dynamics of the collisions to be one-dimensional. Typical peak attractions varied between 60 and 230 fN while the peak particle-particle repulsion was on the order of 60 fN. Random thermal motion of the particles contributed to observable rates for transitions between different equilibrium configurations of vertically separated particles. The influence of nearest- and non-nearest-neighbor interactions on calculated particle parameters is examined using several methods. © 2003 The American Physical Society.

More Details

Stochastic modeling of chemical transport through human skin

American Society of Mechanical Engineers, Bioengineering Division (Publication) BED

Ho, Clifford K.

A probabilistic, transient, three-phase model of chemical transport through human skin has been developed to assess the relative importance of uncertain parameters and processes during chemical exposure assessments and transdermal drug delivery. Penetration routes through the skin that were modeled include the following: (1) intercellular diffusion through the multiphase stratum corneum; (2) aqueous-phase diffusion through sweat ducts; and (3) oil-phase diffusion through hair follicles. Uncertainty distributions were developed for the model parameters, and a Monte Carlo analysis was performed to simulate probability distributions of mass fluxes through each of the routes for a hypothetical scenario of chemical transport through the skin. At early times (60 seconds), the sweat ducts provided a significant amount of simulated mass flux into the bloodstream. At longer times (1 hour), diffusion through the stratum corneum became important because of its relatively large surface area. Sensitivity analyses using stepwise linear regression were also performed to identify model parameters that were most important to the simulated mass fluxes at different times.

More Details

Evidence for pre-sliding tangential deflections in MEMS friction

TRANSDUCERS 2003 - 12th International Conference on Solid-State Sensors, Actuators and Microsystems, Digest of Technical Papers

Luck, D.L.; De Boer, Maarten P.; Ashurst, W.R.; Baker, M.S.

We have developed a new inchworm actuator, consisting of a plate and two frictional clamps, which utilizes leveraged bending for improved amplitude control. Here we investigate its friction characteristics. We measure its average slip per cycle as a function of friction load and independently measure the clamp friction coefficients. A model is developed that takes into account the electromechanics of the actuation plate, boundary conditions and clamp friction. We find that the model does not satisfactorily describe the operation of the actuator. We attribute this to pre-sliding tangential deflections and devise a test whose results are consistent with this phenomenon. This suggests that stable pre-sliding deflections control the behavior of nanometer-scale slip events in MEMS.

More Details

A validation quality heat flux dataset for large pool fires

Proceedings of the ASME Summer Heat Transfer Conference

Brown, Alexander B.; Blanchat, Tom

A series of experiments has been performed in the Sandia National Laboratories FLAME facility with a 2-meter diameter JP-8 fuel pool fire. Sandia heat flux gages were employed to measure the incident flux at 8 locations outside the flame. Experiments were repeated to generate sufficient data for accurate confidence interval analysis. Additional sources of error are quantified and presented together with the data. The goal of this paper is to present these results in a way that is useful for validation of computer models that are capable of predicting heat flux from large fires. We anticipate using these data for comparison to validate models within the Advanced Simulation and Computing (ASC, formerly ASCI) codes FUEGO and SYRINX that predict fire dynamics and radiative transport through participating media. We present preliminary comparisons between existing models and experimental results.

More Details

Simulation of moving microbeams with the direct simulation Monte Carlo method

33rd AIAA Fluid Dynamics Conference and Exhibit

Gallis, Michail A.; Torczynski, J.R.

An improved model for the gas damping of out-of-plane motion of a microbeam is developed based on the Reynolds equation (RE). A boundary condition for the RE is developed that relates the pressure at the beam perimeter to the beam motion. The two coefficients in this boundary condition are determined from Navier-Stokes (NS) simulations with the slip boundary condition for small slip lengths (relative to the gap height) and from Direct Simulation Monte Carlo (DSMC) molecular gas dynamics simulations for larger slip lengths. This boundary condition significantly improves the accuracy of the RE for cases where the beam width is only slightly greater than the gap height.

More Details

Simple, scalable protocols for high-performance local networks

Proceedings - Conference on Local Computer Networks, LCN

Riesen, Rolf; Maccabe, Arthur B.

RMPP (reliable message passing protocol) is a lightweight transport protocol designed for clusters that provides end-to-end flow control and fault tolerance. In this article, presentations were made that compares RMPP to TCP, UDP, and "Utopia". The article compared the protocols on four benchmarks: bandwidth, latency, all-to-all, and communication-computation overlap. The results have shown that message-based protocols like RMPP have several advantages over TCP including ease of implementation, support for computation/communication overlap, and low CPU overhead.

More Details

Precursor film controlled wetting of pb on cu

Physical Review Letters

Webb, Edmund B.; Grest, Gary S.; Heine, David R.

Wetting in a system where the kinetics of drop spreading are controlled by the rate of formation of a precursor film is modeled for the first time at the atomistic scale. Molecular dynamics simulations of Pb(l) wetting Cu(111) and Cu(100) show that a precursor film of atomic thickness evolves and spreads diffusively. This precursor film spreads significantly faster on Cu(111) than on Cu(100). For Cu(100), the kinetics of drop spreading are dramatically decreased by slow advancement of the precursor film. Slow precursor film kinetics on Cu(100) are partly due to the formation of a surface alloy at the solid-liquid interface which does not occur on Cu(111). © 2003 The American Physical Society.

More Details

A response modeling approach to experimental design for optimal product design

4th International Symposium on Uncertainty Modeling and Analysis, ISUMA 2003

Rutherford, Brian M.

The general problem considered is an optimization problem involving product design where some initial data are available and computer simulation is to be used to obtain more information. Resources and system complexity together restrict the number of simulations that can be performed in search of optimal settings for the product parameters. Consequently levels of these parameters, used in the simulations, (the experimental design) must be selected in an efficient way. We describe an algorithmic 'response-modeling' approach for performing this selection. The algorithm is illustrated using a rolamite design application. We provide (as examples) optimal one, two and three-point experimental designs for the rolamite computational analyses.

More Details

Computational analysis of fluid-wall interactions in micro- and nano-domains

American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED

Wong, Chungnin C.; Noble, David R.

In many micro-scale fluid dynamics problems, molecular-level processes can control the interfacial energy and viscoelastic properties at a liquid-solid interface. This leads to a flow behavior that is very different from those similar fluid dynamics problems at the macro-scale. Presently, continuum modeling fails to capture this flow behavior. Molecular dynamics simulations have been applied to investigate these complex fluid-wall interactions at the nano-scale. Results show that the influence of the wall crystal lattice orientation on the fluid-wall interactions can be very important. To address those problems involving interactions of multiple length scales, a coupled atomistic-continuum model has been developed and applied to analyze flow in channels with atomically smooth walls. The present coupling strategy uses the molecular dynamics technique to probe the non-equilibrium flow near the channel walls and applies constraints to the fluid particle motion, which is coupled to the continuum flow modeling in the interior region. We have applied this new methodology to investigate Couette flow in micro-channels.

More Details

Three-dimensional representations of salt-dome margins at four active strategic petroleum reserve sites

Rautman, Christopher A.; Stein, Joshua S.

Existing paper-based site characterization models of salt domes at the four active U.S. Strategic Petroleum Reserve sites have been converted to digital format and visualized using modern computer software. The four sites are the Bayou Choctaw dome in Iberville Parish, Louisiana; the Big Hill dome in Jefferson County, Texas; the Bryan Mound dome in Brazoria County, Texas; and the West Hackberry dome in Cameron Parish, Louisiana. A new modeling algorithm has been developed to overcome limitations of many standard geological modeling software packages in order to deal with structurally overhanging salt margins that are typical of many salt domes. This algorithm, and the implementing computer program, make use of the existing interpretive modeling conducted manually using professional geological judgement and presented in two dimensions in the original site characterization reports as structure contour maps on the top of salt. The algorithm makes use of concepts of finite-element meshes of general engineering usage. Although the specific implementation of the algorithm described in this report and the resulting output files are tailored to the modeling and visualization software used to construct the figures contained herein, the algorithm itself is generic and other implementations and output formats are possible. The graphical visualizations of the salt domes at the four Strategic Petroleum Reserve sites are believed to be major improvements over the previously available two-dimensional representations of the domes via conventional geologic drawings (cross sections and contour maps). Additionally, the numerical mesh files produced by this modeling activity are available for import into and display by other software routines. The mesh data are not explicitly tabulated in this report; however an electronic version in simple ASCII format is included on a PC-based compact disk.

More Details

Continuous-wave radar to detect defects within heat exchangers and steam generator tubes

Rochau, Gary E.; Rochau, Gary E.; Caffey, Thurlow W.

A major cause of failures in heat exchangers and steam generators in nuclear power plants is degradation of the tubes within them. The tube failure is often caused by the development of cracks that begin on the outer surface of the tube and propagate both inwards and laterally. A new technique was researched for detection of defects using a continuous-wave radar method within metal tubing. The experimental program resulted in a completed product development schedule and the design of an experimental apparatus for studying handling of the probe and data acquisition. These tests were completed as far as the prototypical probe performance allowed. The prototype probe design did not have sufficient sensitivity to detect a defect signal using the defined radar technique and did not allow successful completion of all of the project milestones. The best results from the prototype probe could not detect a tube defect using the radar principle. Though a more precision probe may be possible, the cost of design and construction was beyond the scope of the project. This report describes the probe development and the status of the design at the termination of the project.

More Details

Interstitial computing: Utilizing spare cycles on supercomputers

Proceedings - IEEE International Conference on Cluster Computing, ICCC

Kleban, S.D.; Clearwater, Scott H.

This paper presents an analysis of utilizing unused cycles on supercomputers through the use of many small jobs. What we call "interstitial computing," is important to supercomputer centers for both productivity and political reasons. Interstitial computing makes use of the fact that small jobs are more or less fungible consumers of compute cycles that are more efficient for bin packing than the typical jobs on a supercomputer. An important feature of interstitial computing is that it not have a significant impact on the makespan of native jobs on the machine. Also, a facility can obtain higher utilizations that may only be otherwise possible with more complicated schemes or with very long wait times. The key contribution of this paper is that it provides theoretical and empirical guidelines for users and administrators for how currently unused supercomputer cycles may be exploited. We find that that interstitial computing is a more effective means for increasing machine utilization than increasing native job run times or size.

More Details

Improved capabilities for proton and neutron irradiations at TRIUMF

IEEE Radiation Effects Data Workshop

Shaneyfelt, Marty R.; Dodd, Paul E.

Improvements have been made at TRIUMF to permit higher proton intensities of up to 1010 cm-2s-1 over the energy range 20-500 MeV. This improved capability enables the study of displacement damage effects that require higher fluence irradiations. In addition, a high energy neutron irradiation capability has been developed for terrestrial cosmic ray soft error rate (SER) characterization of integrated circuits. The neutron beam characteristics of this facility are similar to those currently available at the Los Alamos National Laboratory WNR test facility. SER data measured on several SRAMs using the TRIUMF neutron beam are in good agreement with the results obtained on the same devices using the WNR facility. The TRIUMF neutron beam also contains thermal neutrons that can be easily removed by a sheet of cadmium. The ability to choose whether thermal neurons are present is a useful attribute not possible at the WNR.

More Details

Use of step scan FT-IR and multivariate curve resolution to understand aging of propellant binder as a function of depth into the polymer material

Rivera, Dion A.; Rivera, Dion A.; Alam, Mary K.

A sample of polymeric propellant binder was aged from 0 to 60 days at 95 C and analyzed using FT-IR step scan photoacoustic spectroscopy. This technique has the ability of to obtain spectra of the polymer as a function of depth into the polymer material. Multivariate curve resolution was applied to the spectra data obtained to extract the contributions of the aged and un-aged spectral components from the spectra. It was found that multivariate curve resolution could efficiently separate highly overlapped spectra and yielded insights into the aging process.

More Details

Spatial bias in field-estimated unsaturated hydraulic properties

Water Resources Research

Glass, Robert J.

We use a Monte Carlo approach to explore the potential impact of observation and inversion model errors on the spatial statistics of field-estimated unsaturated hydraulic properties. For this analysis we simulate tension infiltrometer measurements in a series of idealized realities, each consisting of spatially correlated random property fields. We consider only simple measurement errors that can be easily modeled. We show that estimated hydraulic properties are strongly biased by small, simple observation and inversion model errors. This bias can lead to order-of-magnitude errors in spatial statistics and artificial cross correlation between measured properties. The magnitude of bias varies with the true mean of the property field, the type of error considered, and the type of spatial statistic. We find no unique indicators of bias as property values may appear reasonable and spatial statistics may look realistic. Our results suggest new concerns for geostatisticians, stochastic modelers, and unsaturated zone practitioners who are unaware of the potential impact of spatial bias in field-estimated properties.

More Details

NMR measurements and simulations of particle migration in non-Newtonian fluids

Chemical Engineering Communications

Rao, Rekha R.; Mondy, L.A.; Baer, Thomas A.

Shear-induced migration of particles is studied during the slow flow of suspensions of neutrally buoyant spheres, at 50% particle volume fraction, in an inelastic but shear-thinning, suspending fluid. The suspension is flowing in between a rotating inner cylinder and a stationary outer cylinder. The conditions are such that nonhydrodynamic effects are negligible. Nuclear magnetic resonance (NMR) imaging demonstrates that the movement of particles away from the high shear rate region is more pronounced than for a Newtonian suspending liquid. We test a continuum constitutive model for the evolution of particle concentration in a flowing suspension proposed by Phillips et al., but extended to shear-thinning, suspending fluids. The fluid constitutive equation is Carreau-like in its shear-thinning behavior but also varies with the local particle concentration. The model captures many of the trends found in the experimental data, but does not yet agree quantitatively. In fact, quantitative agreement with a diffusive flux constitutive equation would be impossible without the addition of another fitting parameter that may depend on the shear-thinning nature of the suspending fluid. Because of this, we feel that the Phillips model may be fundamentally inadequate for simulating flows of particles in non-Newtonian suspending fluids without the introduction of a normal stress correction or other augmenting terms.

More Details

Numerical predictions and experimental results of air flow in a smooth quarter-scale nacelle

40th AIAA Aerospace Sciences Meeting and Exhibit

Black, Amalia R.; Suo-Anttila, Jill M.; Gritzo, Louis A.

Fires in aircraft engine nacelles must be rapidly suppressed to avoid loss of life and property. The design of new and retrofit suppression systems has become significantly more challenging due to the ban on production of Halon 1301 for environmental concerns. Since fire dynamics and the transport of suppressants within the nacelle are both largely determined by the available air flow, efforts to define systems using less effective suppressants greatly benefit from characterization of nacelle air flow fields. A combined experimental and computational study of nacelle air flow therefore has been initiated. Calculations have been performed using both CFD-ACE (a Computational Fluid Dynamics (CFD) model with a body-fitted coordinate grid) and VULCAN (a CFD-based fire field model with a Cartesian "brick" shaped grid). A quarter-scale test fixture was designed and fabricated for the purpose of obtaining spatially-resolved measurements of velocity and turbulence intensity in a smooth nacelle. Numerical calculations have been performed for the conditions of the experiment and comparisons with experimental results obtained from the quarter-scale test fixture are discussed. In addition, numerical simulations were performed to assess the sensitivity of the predictions to the grid size and to the turbulence models with and without wall functions. In general, the velocity predictions show very good agreement with the data in the center of the channel but deviate near the walls. The turbulence intensity results tend to amplify the differences in velocity, although most of the trends are in agreement. In addition, there were some differences between VULCAN and CFD-ACE results in the angled wall regions due to the Cartesian grid structure used by the VULCAN code. Also, the experimental data tended to show poorer resolution near the walls of the transition ducts. The increased uncertainty in the data highlights some of the challenges in getting data near the walls due to the low signal to noise ratio. Overall, this effort provided a benchmark case for both the VULCAN and CFD-ACE codes for the application of interest.

More Details

Material Characterization of Glass, Carbon, and Hybrid-Fiber SCRIMP Panels

Ashwill, Thomas D.

The purpose of this study was to generate the material database for carbon and glass composite panels created by the SCRIMP process. The materials tested were glass/polyester composites, two types of carbon/polyester composites, and carbon and glass hybrid composites. The differences between the two types of carbon/polyester, which we call Type 1 and Type 2, are the ply thickness (.037 inch/ply and .048 inch/ply) and slightly different treatment of polyester resin. The tests that were performed for this study are four-point-bending tests, tension tests, panel warping tests, and beam bend-twist coupling tests. The material properties of interest were basic longitudinal and transverse stiffness and strength, residual stress due to curing, and the effect of bend-twist coupling. The bend-twist coupling is a feature that can be added to the composite laminate or structure, such that when it is bent, it will also twist.

More Details

A Review of Production System Models of Cognition and Example Demonstration

Brannon, Nathan B.

There have been significant efforts to develop cognitively plausible software architectures of human information processing in the last three decades. This report summarizes several architectures that continue to be developed. The specific type of cognitive models developed are known as production system architectures, which refers to the characterization of knowledge in terms of procedural (''how-to'' knowledge) condition-action relationships consisting of declarative (''what'' or factual) knowledge. To illustrate the ability for these models to instantiate human cognitive performance, a simulation using ACT-R (Adaptive Control of Thought - Rational) was implemented for a supervisory control task. Correlations between simulated and human learning of the task were measured and yielded correlations as high as 0.93.

More Details

Switchable Hydrophobic-Hydrophilic Surfaces

Bunker, B.C.; Huber, Dale L.; Kent, Michael S.; Yim, Hyun Y.; Curro, John G.; Manginell, Ronald P.; Mendez, Sergio M.

Tethered films of poly n-isopropylacrylamide (PNIPAM) films have been developed as materials that can be used to switch the chemistry of a surface in response to thermal activation. In water, PNIPAM exhibits a thermally-activated phase transition that is accompanied by significant changes in polymer volume, water contact angle, and protein adsorption characteristics. New synthesis routes have been developed to prepare PNIPAM films via in-situ polymerization on self-assembled monolayers. Swelling transitions in tethered films have been characterized using a wide range of techniques including surface plasmon resonance, attenuated total reflectance infrared spectroscopy, interfacial force microscopy, neutron reflectivity, and theoretical modeling. PNIPAM films have been deployed in integrated microfluidic systems. Switchable PNIPAM films have been investigated for a range of fluidic applications including fluid pumping via surface energy switching and switchable protein traps for pre-concentrating and separating proteins on microfluidic chips.

More Details

Editing Tips for Technical Publications in the Joint Nuclear Weapons Publication System (JNWPS)

Allen, Tara S.; Allen, Tara S.

These editing tips contain helpful suggestions to assist writers who are writing, editing, and publishing technical publications in the JNWPS. The suggestions clarify some of the most common writing problems and requirements of two publications used in the JNWPS: ''DOE-DTRA TP 1-1, Joint Nuclear Weapons Publications System Operating Procedures, Specifications, and Standards, and United States Government Printing Office Style Manual''. Topics include requirements for abbreviations, formats for drafts, layouts of illustrations and tables, appropriate wording for interim changes, guidance for creating a list of effective pages, how to insert and delete pages and paragraphs, referencing other technical publications, use of revision bars, requirements for safety precautions, use of hyphens, and how to place warnings, cautions, and notes. Also included are a writer's checklist, samples of draft title pages, and a section of helpful tips for the writers who use the department's desktop publishing software program, Adobe{reg_sign} FrameMaker{reg_sign}.

More Details

MEMS Adaptive Optics Devices: LDRD No. 02-1385 Summary Report

Dagel, Daryl D.; Allen, James J.

The primary goal of this portion of the LDRD is to develop a vertical programmable diffraction grating that can be fabricated with Sandia's Ultra-planar Multi-level MEMS Technology, the SUMMiT V{trademark} process. This grating is targeted for use in a chemical detection system dubbed the Polychromator. A secondary goal is to design diffraction grating structures with additional degrees of freedom (DOF). Gratings with 2.5 microns of vertical stroke have been realized. In addition, rotational DOF grating structures have been successfully actuated, and a structure has been developed that minimizes residual stress effects.

More Details

Nanostructured Materials Integrated in Microfabricated Optical Devices

Sasaki, Darryl Y.; Samora, S.; Warren, M.E.; Sinclair, Michael B.; Last, Julie A.; Bondurant, Bruce B.; Brinker, C.J.; Kemme, S.A.; Wendt, J.R.; Carter, T.R.

This project combined nanocomposite materials with microfabricated optical device structures for the development of microsensor arrays. For the nanocomposite materials we have designed, developed, and characterized self-assembling, organic/inorganic hybrid optical sensor materials that offer highly selective, sensitive, and reversible sensing capability with unique hierarchical nanoarchitecture. Lipid bilayers and micellar polydiacetylene provided selective optical response towards metal ions (Pb(II), Hg(II)), a lectin protein (Concanavalin A), temperature, and organic solvent vapor. These materials formed as composites in silica sol-gels to impart physical protection of the self-assembled structures, provide a means for thin film surface coatings, and allow facile transport of analytes. The microoptical devices were designed and prepared with two- and four-level diffraction gratings coupled with conformal gold coatings on fused silica. The structure created a number of light reflections that illuminated multiple spots along the silica surface. These points of illumination would act as the excitation light for the fluorescence response of the sensor materials. Finally, we demonstrate an integrated device using the two-level diffraction grating coupled with the polydiacetylene/silica material.

More Details

SIERRA Framework Version 3: h-Adaptivity Design and Use

Stewart, James R.; Edwards, Harold C.

This paper presents a high-level overview of the algorithms and supporting functionality provided by SIERRA Framework Version 3 for h-adaptive finite-element mechanics application development. Also presented is a fairly comprehensive description of what is required by the application codes to use the SIERRA h-adaptivity services. In general, the SIERRA framework provides the functionality for hierarchically subdividing elements in a distributed parallel environment, as well as dynamic load balancing. The mechanics application code is required to supply an a posteriori error indicator, prolongation and restriction operators for the field variables, hanging-node constraint handlers, and execution control code. This paper does not describe the Application Programming Interface (API), although references to SIERRA framework classes are given where appropriate.

More Details

Rapid Ultrasensitive Chemical-Fingerprint Detection of Chemical and Biochemical Warfare Agents

Ashby, Carol I.; Shepodd, Timothy J.; Yelton, William G.; Muron, David J.

Vibrational spectra can serve as chemical fingerprints for positive identification of chemical and biological warfare molecules. The required speed and sensitivity might be achieved with surface-enhanced Raman spectroscopy (SERS) using nanotextured metal surfaces. Systematic and reproducible methods for preparing metallic surfaces that maximize sensitivity have not been previously developed. This work sought to develop methods for forming high-efficiency metallic nanostructures that can be integrated with either gas or liquid-phase chem-lab-on-a-chip separation columns to provide a highly sensitive, highly selective microanalytical system for detecting current and future chem/bio agents. In addition, improved protein microchromatographic systems have been made by the creation of acrylate-based porous polymer monoliths that can serve as protein preconcentrators to reduce the optical system sensitivity required to detect and identify a particular protein, such as a bacterial toxin.

More Details

Characterization of Fuel Cell Vehicle Duty Cycle Elements

Maish, Alexander B.; Nilan, Eric J.; Baca, Paul M.

This report covers research done as part of US Department of Energy contract DE-PS26-99FT14299 with the Fuel Cell Propulsion Institute on the fuel cell RATLER{trademark} vehicle, Lurch, as well as work done on the fuel cells designed for the vehicle. All work contained within this report was conducted at the Robotic Vehicle Range at Sandia National Laboratories in Albuquerque New Mexico. The research conducted includes characterization of the duty cycle of the robotic vehicle. This covers characterization of its various abilities such as hill climbing and descending, spin-turns, and driving on level ground. This was accomplished with the use of current sensors placed in the vehicle in conjunction with a Data Acquisition System (DAS), which was also created at Sandia Labs. Characterization of the two fuel cells was accomplished using various measuring instruments and techniques that will be discussed later in the report. A Statement of Work for this effort is included in Appendix A. This effort was able to complete characterization of vehicle duty cycle elements using battery power, but problems with the fuel cell control systems prevented completion of the characterization of the fuel cell operation on the benchtop and in the vehicle. Some data was obtained characterizing the fuel cell current-voltage performance and thermal rise rate by bypassing elements of the control system.

More Details

Record and Document Management System (RMS) Guidelines: Issue A

Eaton, Shelley M.; Northrop, Christine L.

RMS Guidelines defines the processes and conventions to manage both records and documents for the ASCI Verification and Validation Program at Sandia National Laboratories, employing the ASCI V&V RMS application. It is the definitive source for all information regarding the creation, submittal, use, maintenance, and disposition of records and documents. This document is also used as evidence of meeting records management requirements as stated in DOE Order 414.1A, Quality Assurance, and Sandia National Laboratories Corporate Technical Business Practice TBP-500, Records Management.

More Details

Use of Intense Ion Beams for Surface Modification and Creation of New Materials

Renk, Timothy J.; Provencio, P.N.; Clem, Paul G.; Prasad, Somuri V.

We have conducted surface treatment and alloying experiments with Al, Fe, and Ti-based metals on the RHEPP-1 accelerator (0.8 MV, 20 W, 80 ns FHWM, up to 1 Hz repetition rate) at Sandia National Laboratories. Ions are generated by the MAP gas-breakdown active anode, which can yield a number of different beam species including H, N, and C, depending upon the injected gas. Beams of intense pulsed high-power ion beams have been used to produce surface modification by changes in microstructure caused by rapid heating and cooling of the surface. Increase of beam power leads to ablation of a target surface, and redeposition of ablated material onto a separate substrate. Experiments are described in which ion beams are used in an attempt to increase high-voltage breakdown of a treated surface. Surface alloying of coated Pt and Hf layers is also described. This mixing of a previously deposited thin-film layer into a Ti-alloy substrate leads to significantly enhanced surface wear durability, compared to either untreated Ti-alloy alone, or the Ti alloy alone treated with the ion beam. Thin-film layers have been produced from a number of target materials. Films of fine-grain Pt and Er are described, and are compared to conventionally formed films. First attempts to form high-dielectric constant BaTiO{sub 3} are described.

More Details

Long-term reliability degradation of ultrathin dielectric films due to heavy-ion irradiation

IEEE Transactions on Nuclear Science

Schwank, James R.; Shaneyfelt, Marty R.; Meisenheimer, Timothy L.; Dodd, Paul E.

High-energy ion-irradiated 3.3-nm oxynitride film and 2.2-nm SiO2-film MOS capacitors show premature break-down during subsequent electrical stress. This degradation in breakdown increases with increasing ion linear energy transfer (LET), increasing ion fluence, and decreasing oxide thickness. The reliability degradation due to high-energy ion-induced latent defects is explained by a simple percolation model of conduction through SiO2 layers with irradiation and/or electrical stress-induced defects. Monitoring the gate-leakage current reveals the presence of latent defects in the dielectric films. These results may be significant to future single-event effects and single-event gate rupture tests for MOS devices and ICs with ultrathin gate oxides.

More Details

Electricity Generation Cost Simulation Model (GenSim)

Drennen, Thomas E.

The Electricity Generation Cost Simulation Model (GenSim) is a user-friendly, high-level dynamic simulation model that calculates electricity production costs for variety of electricity generation technologies, including: pulverized coal, gas combustion turbine, gas combined cycle, nuclear, solar (PV and thermal), and wind. The model allows the user to quickly conduct sensitivity analysis on key variables, including: capital, O&M, and fuel costs; interest rates; construction time; heat rates; and capacity factors. The model also includes consideration of a wide range of externality costs and pollution control options for carbon dioxide, nitrogen oxides, sulfur dioxide, and mercury. Two different data sets are included in the model; one from the US. Department of Energy (DOE) and the other from Platt's Research Group. Likely users of this model include executives and staff in the Congress, the Administration and private industry (power plant builders, industrial electricity users and electric utilities). The model seeks to improve understanding of the economic viability of various generating technologies and their emissions trade-offs. The base case results, using the DOE data, indicate that in the absence of externality costs, or renewable tax credits, pulverized coal and gas combined cycle plants are the least cost alternatives at 3.7 and 3.5 cents/kwhr, respectively. A complete sensitivity analysis on fuel, capital, and construction time shows that these results coal and gas are much more sensitive to assumption about fuel prices than they are to capital costs or construction times. The results also show that making nuclear competitive with coal or gas requires significant reductions in capital costs, to the $1000/kW level, if no other changes are made. For renewables, the results indicate that wind is now competitive with the nuclear option and is only competitive with coal and gas for grid connected applications if one includes the federal production tax credit of 1.8cents/kwhr.

More Details

Sandia Extended Network: Overview of the Design Process

Gomez, Michael D.

This report describes the process that will be used to develop and submit for approval designs for the Sandia Extended Network (SXN). The process follows the steps in the Change Management Process used in the Telecommunication Operations Department's quality management system. Those steps are planning, requirements review, detailed design analysis, implementation, verification, and validation. Two companion reports complete a description of the designs to date: ''Sandia Extended Network: Design Requirements and Sandia Extended Network: Conceptual Design Definition.''

More Details

Sandia Extended Network: Design Requirements

Gomez, Michael D.; Gossage, Steven A.

This report contains the design requirements for creating a limited-access Sandia Extended Network (SXN), which would be used to collaborate with Nuclear Weapons Complex Labs personnel, university collaborators, industry, and others who may not be allowed accounts on the Sandia Restricted Network (SRN). This document contains the design requirements for creating a limited-access Sandia Extended Network (SXN), which would be used by non-Sandians to collaborate with NWC Labs personnel and others who are not allowed accounts on the Sandia Restricted Network (SRN). Its main purpose is to articulate the requirements upon which the design options and hardware costs for the Sandia eXtended Network (SXN) can be based and in turn presented to 8900 and 9300 Management. The requirements are further addressed in reports outlining its security architecture and in the five-volume set of network architecture reports: An Architecture for the Sandia Extended Network: Overview; Detailed Description of the Architecture, Design of the Model, and Balanced Protections; Background of the Architecture and its Relevance to Sandia; Terminology and Concepts Relevant to Networks; and Policy-Based Networks and Information Management.

More Details

Vertical Cavity Surface Emitting Lasers

Smith, A.V.; Fischer, Arthur J.

The goal of this project was to increase the power of vertical cavity surface emitting lasers and to convert their wavelength into the blue/ultraviolet and the infrared for sensing applications. We have increased the power to the multi-watt level and have generated several milliwatts of blue light using optical pumping. Electrical pump has been less successful, but we have identified the problems and begun work to overcome them using a bottom emitting design.

More Details

Evaluation of Islanding Detection Methods for Utility-Interactive Inverters in Photovoltaic Systems

Bower, Ward I.

This report describes the various methods and circuits that have been developed to detect an islanding condition for photovoltaic applications and presents three methods that have been developed to test those methods and circuits. Passive methods for detecting an islanding condition basically monitor parameters such as voltage and frequency and/or their characteristics and cause the inverter to cease converting power when there is sufficient transition from normal specified conditions. Active methods for detecting the island introduce deliberate changes or disturbances to the connected circuit and then monitor the response to determine if the utility grid with its stable frequency, voltage and impedance is still connected. If the small perturbation is able to affect the parameters of the load connection within prescribed requirements, the active circuit causes the inverter to cease power conversion and delivery of power to the loads. The methods not resident in the inverter are generally controlled by the utility or have communications between the inverter and the utility to affect an inverter shut down when necessary. This report also describes several test methods that may be used for determining whether the anti-islanding method is effective. The test circuits and methodologies used in the U.S. have been chosen to limit the number of tests by measuring the reaction of a single or small number of inverters under a set of consensus-based worst-case conditions.

More Details

Network Security Mechanisms Utilizing Dynamic Network Address Translation LDRD Project

Jung, Carrie M.; Lee, Erik L.; Michalski, John T.

A new protocol technology is just starting to emerge from the laboratory environment. Its stated purpose is to provide an additional means in which networks, and the services that reside on them, can be protected from adversarial compromise. This report has a two-fold objective. First is to provide the reader with an overview of this emerging Dynamic Defenses technology using Dynamic Network Address Translation (Dynat). This ''structure overview'' is concentrated in the body of the report, and describes the important attributes of the technology. The second objective is to provide a framework that can be used to help in the classification and assessment of the different types of dynamic defense technologies along with some related capabilities and limitations. This information is primarily contained in the appendices.

More Details

All-Ceramic Thin Film Battery

Boyle, Timothy J.; Ingersoll, David I.; Cygan, Randall T.; Rodriguez, M.A.; Rahimian, Kamyar R.; Voigt, James A.

We have undertaken the synthesis of a thin film ''All Ceramic Battery'' (ACB) using solution route processes. Based on the literature and experimental results, we selected SnO{sub 2}, LiCoO{sub 2}, and LiLaTiO{sub 3} (LLT) as the anode, cathode, and electrolyte, respectively. Strain induced by lattice mismatch between the cathode and bottom electrode, as estimated by computational calculations, indicate that thin film orientations for batteries when thicknesses are as low as 500 {angstrom} are strongly controlled by surface energies. Therefore, we chose platinized silicon as the basal platform based on our previous experience with this material. The anode thin films were generated by standard spin-cast methods and processing using a solution of [Sn(ONep)]{sub 8} and HOAc which was found to form Sn{sub 6}(O){sub 4}(ONep){sub 4}. Electrochemical evaluation showed that the SnO{sub 2} was converted to Sn{sup o} during the first cycle. The cathode was also prepared by spin coating using the novel [Li(ONep)]{sub 8} and Co(OAc){sub 2}. The films could be electrochemically cycled (i.e., charged/discharged), with all of the associated structural changes being observable by XRD. Computational models indicated that the LLT electrolyte would be the best available ceramic material for use as the electrolyte. The LLT was synthesized from [Li(ONep)]{sub 8}, [Ti(ONep){sub 4}]{sub 2}, and La(DIP){sub 3}(py){sub 3} with RTP processing at 900 C being necessary to form the perovskite phase. Alternatively, a novel route to thin films of the block co-polymer ORMOLYTE was developed. The integration of these components was undertaken with each part of the assembly being identifiably by XRD analysis (this will allow us to follow the progress of the charge/discharge cycles of the battery during use). SEM investigations revealed the films were continuous with minimal mixing. All initial testing of the thin-film cathode/electrolyte/anode ACB devices revealed electrical shorting. Alternative approaches for preparing non-shorted devices (e.g. inverted and side-by-side) are under study.

More Details

SIERRA Framework Version 3: Core Services Theory and Design

Edwards, Harold C.

The SIERRA Framework core services provide essential services for managing the mesh data structure, computational fields, and physics models of an application. An application using these services will supply a set of physics models, define the computational fields that are required by those models, and define the mesh upon which its physics models operate. The SIERRA Framework then manages all of the data for a massively parallel multiphysics application.

More Details

Sorption of Arsenic from Drinking Water to Mg(OH)2 Sorrel's Cements, and Zirconium Doped Materials

Moore, Robert C.; Zhao, Hongting Z.; Sanchez, Charles A.; Larese, Kathleen C.; Salas, Fred S.; Hasan, Ahmed H.; Lucero, Daniel A.

It was discovered that MgO or Mg(OH){sub 2} when it reacts with water is a very strong sorbent for arsenic. Distribution constants, or K{sub d} values, are as high as 1 x 10{sup 6} L/mole. In this work, Mg(OH){sub 2} and other compounds have been investigated as sorbents for arsenic and other contaminants. This work has resulted in several major accomplishments including: (1) design, construction, and testing of a pressure sand filter to remove Mg(OH){sub 2} after it has sorbed arsenic from water, (2) stabilization of Mg(OH){sub 2} as a Sorrel's cement against reaction with carbonate that results in MgCO{sub 3} formation decreasing the efficiency of Mg(OH){sub 2} to sorb arsenic, and (3) the development of a new, very promising sorbent for arsenic based on zirconium. Zirconium is an environmentally benign material found in many common products such as toothpaste. It is currently used in water treatment and is very inexpensive. In this work, zirconium has been bonded to activated carbon, zeolites, sand and montmorillonite. Because of its high charge in ionic form (+6), zirconium is a strong sorbent for many anions including arsenic. In equilibrium experiments arsenic concentrations in water were reduced from 200 ppb to less than 1 ppb in less than 1 minute of contact time. Additionally, analytical methods for detecting arsenic in water have also been investigated. Various analytical techniques including HPLC, AA and ICP-MS are used for quantification of arsenic. Due to large matrix interferences HPLC and AA techniques are not very selective and are time consuming. ICP-MS is highly efficient, requires a low sample volume and has a high tolerance for interferences. All these techniques are costly and require trained staff, and with the exception of ICP-MS, these methods cannot be used at low ppb arsenic concentration without using a pre-concentration step. An alternative to these traditional techniques is to use a colorimetric method based on leucocrystal violet dye interaction with iodine. This method has been adapted in our facility for quantifying arsenic concentrations down to 14 ppb.

More Details

Analysis of Price Equilibriums in the Aspen Economic Model under Various Purchasing Methods

Slepoy, Natasha S.; Pryor, Richard J.

Aspen, a powerful economic modeling tool that uses agent modeling and genetic algorithms, can accurately simulate the economy. In it, individuals are hired by firms to produce a good that households then purchase. The firms decide what price to charge for this good, and based on that price, the households determine which firm to purchase from. We will attempt to discover the Nash Equilibrium price found in this model under two different methods of determining how many orders each firm receives. To keep it simple, we will assume there are only two firms in our model, and that these firms compete for the sale of one identical good.

More Details

High Efficiency Optical MEMS by the Integration of Photonic Lattices with Surface MEMS

Fleming, J.G.; Lin, Shawn-Yu L.; Mani, Seethambal S.; Sniegowski, Jeffry J.; Rodgers, Murray S.; Dagel, Daryl D.

This report outlines our work on the integration of high efficiency photonic lattice structures with MEMS (MicroElectroMechanical Systems). The simplest of these structures were based on 1-D mirror structures. These were integrated into a variety of devices, movable mirrors, switchable cavities and finally into Bragg fiber structures which enable the control of light in at least 2 dimensions. Of these devices, the most complex were the Bragg fibers. Bragg fibers consist of hollow tubes in which light is guided in a low index media (air) and confined by surrounding Bragg mirror stacks. In this work, structures with internal diameters from 5 to 30 microns have been fabricated and much larger structures should also be possible. We have demonstrated the fabrication of these structures with short wavelength band edges ranging from 400 to 1600nm. There may be potential applications for such structures in the fields of integrated optics and BioMEMS. We have also looked at the possibility of waveguiding in 3 dimensions by integrating defects into 3-dimensional photonic lattice structures. Eventually it may be possible to tune such structures by mechanically modulating the defects.

More Details

Education and Training at SNL: Past and Present

Bomber, Thomas M.; Drewien, Celeste A.

The purpose of this review was to provide insights and information to Sandia National Laboratories' (SNL) Education Council on the state of technical education and training at SNL in order to address the concern that a change in philosophy surrounding education had occurred. To accomplish this, the status of current and past technical training and education programs were compared, and significant changes at SNL were assessed for their impact on education and training. Major changes in education and training are in the advertisement of course offerings, the course delivery methods, and the funding mechanisms for student and instructor time as well as course costs. The significant changes in SNL which influenced technical training and education are the considerable increase in mandatory or compliance training, a fundamental shift in SNL's management structure from an institutional structure to a more business-like, project-budgeted structure, and the change in SNL's mission at the end of the Cold War. These changes contributed to less time for technical training, reduction of training funds, elimination of some training, and a Service Center approach to paying for training. Most importantly, the overall combined effect has resulted in a shift from a strategic to a tactical training approach. The Corporate Training Department (CTD) has maneuvered to accommodate these changes and keep abreast of constantly changing needs.

More Details

Intelligent Targeting for a Remotely Operated, Rapid Aiming Weapon Platform

Nelson, C.L.; Carlson, Jeffrey J.

Sandia National Laboratories has been investigating the use of remotely operated weapon platforms in Department of Energy (DOE) facilities. These platforms offer significant force multiplication and enhancement by enabling near instantaneous response to attackers, increasing targeting accuracy, removing personnel from direct weapon fire, providing immunity to suppressive fire, and reducing security force size needed to effectively respond. Test results of the Telepresent Rapid Aiming Platform (TRAP) from Precision Remotes, Inc. have been exceptional and response from DOE sites and the U.S. Air Force is enthusiastic. Although this platform performs comparably to a trained marksman, the target acquisition speeds are up to three times longer. TRAP is currently enslaved to a remote operator's joystick. Tracking moving targets with a joystick is difficult; it dependent upon target range, movement patterns, and operator skill. Even well-trained operators encounter difficulty tracking moving targets. Adding intelligent targeting capabilities on a weapon platform such as TRAP would significantly improve security force response in terms of effectiveness and numbers of responders. The initial goal of this project was to integrate intelligent targeting with TRAP. However, the unavailability of a TRAP for laboratory purposes drove the development of a new platform that simulates TRAP but has a greater operating range and is significantly faster to reposition.

More Details

Regional Dynamic Simulation Modeling and Analysis of Integrated Energy Futures

Malczynski, Leonard A.; Beyeler, Walter E.; Conrad, Stephen H.; Harris, David H.; Rexroth, Paul E.; Baker, Arnold B.

The Global Energy Futures Model (GEFM) is a demand-based, gross domestic product (GDP)-driven, dynamic simulation tool that provides an integrated framework to model key aspects of energy, nuclear-materials storage and disposition, environmental effluents from fossil and non fossil energy and global nuclear-materials management. Based entirely on public source data, it links oil, natural gas, coal, nuclear and renewable energy dynamically to greenhouse-gas emissions and 12 other measures of environmental impact. It includes historical data from 1990 to 2000, is benchmarked to the DOE/EIA/IEO 2001 [5] Reference Case for 2000 to 2020, and extrapolates energy demand through the year 2050. The GEFM is globally integrated, and breaks out five regions of the world: United States of America (USA), the Peoples Republic of China (China), the former Soviet Union (FSU), the Organization for Economic Cooperation and Development (OECD) nations excluding the USA (other industrialized countries), and the rest of the world (ROW) (essentially the developing world). The GEFM allows the user to examine a very wide range of ''what if'' scenarios through 2050 and to view the potential effects across widely dispersed, but interrelated areas. The authors believe that this high-level learning tool will help to stimulate public policy debate on energy, environment, economic and national security issues.

More Details

Dynamic Simulation Model of the National Security Consequences from Energy Supply Disruptions

Malczynski, Leonard A.; Paananen, Orman H.; Harris, David H.; Baker, Arnold B.

Recent terrorist attacks in the United States have increased concerns about potential national security consequences from energy supply disruptions. The purpose of this Laboratory Directed Research & Development (LDRD) is to develop a high-level dynamic simulation model that would allow policy makers to explore the national security consequences of major US. energy supply disruptions, and to do so in a way that would integrate energy, economic and environmental components. The model allows exploration of potential combinations of demand-driven energy supplies that meet chosen policy objectives, including: Mitigating economic losses, measured in national economic output and employment levels, due to terrorist activity or forced outages of the type seen in California; Control of greenhouse gas levels and growth rates; and Moderating US. energy import requirements. This work has built upon the Sandia US. Energy and greenhouse Gas Model (USEGM) by integrating a macroeconomic input-output framework into the model, adding the capability to assess the potential economic impact of energy supply disruptions and the associated national security issues. The economic impacts of disruptions are measured in terms of lost US. output (e.g., GDP, sectoral output) and lost employment, and are assessed either at a broad sectoral level (3 sectors) or at a disaggregated level (52 sectors). In this version of the model, physical energy disruptions result in quantitative energy shortfalls, and energy prices are not permitted to rise to clear the markets.

More Details

Predicting Function of Biological Macromolecules: A Summary of LDRD Activities: Project 10746

Frink, Laura J.; Rempe, Susan R.; Means, Shawn A.; Stevens, Mark J.; Crozier, Paul C.; Martin, Marcus G.; Sears, Mark P.; Hjalmarson, Harold P.

This LDRD project has involved the development and application of Sandia's massively parallel materials modeling software to several significant biophysical systems. They have been successful in applying the molecular dynamics code LAMMPS to modeling DNA, unstructured proteins, and lipid membranes. They have developed and applied a coupled transport-molecular theory code (Tramonto) to study ion channel proteins with gramicidin A as a prototype. they have used the Towhee configurational bias Monte-Carlo code to perform rigorous tests of biological force fields. they have also applied the MP-Sala reacting-diffusion code to model cellular systems. Electroporation of cell membranes has also been studied, and detailed quantum mechanical studies of ion solvation have been performed. In addition, new molecular theory algorithms have been developed (in FasTram) that may ultimately make protein solvation calculations feasible on workstations. Finally, they have begun implementation of a combined molecular theory and configurational bias Monte-Carlo code. They note that this LDRD has provided a basis for several new internal (e.g. several new LDRD) and external (e.g. 4 NIH proposals and a DOE/Genomes to Life) proposals.

More Details

Syndrome Surveillance Using Parametric Space-Time Clustering

Koch, Mark W.; Mckenna, Sean A.; Bilisoly, Roger L.

As demonstrated by the anthrax attack through the United States mail, people infected by the biological agent itself will give the first indication of a bioterror attack. Thus, a distributed information system that can rapidly and efficiently gather and analyze public health data would aid epidemiologists in detecting and characterizing emerging diseases, including bioterror attacks. We propose using clusters of adverse health events in space and time to detect possible bioterror attacks. Space-time clusters can indicate exposure to infectious diseases or localized exposure to toxins. Most space-time clustering approaches require individual patient data. To protect the patient's privacy, we have extended these approaches to aggregated data and have embedded this extension in a sequential probability ratio test (SPRT) framework. The real-time and sequential nature of health data makes the SPRT an ideal candidate. The result of space-time clustering gives the statistical significance of a cluster at every location in the surveillance area and can be thought of as a ''health-index'' of the people living in this area. As a surrogate to bioterrorism data, we have experimented with two flu data sets. For both databases, we show that space-time clustering can detect a flu epidemic up to 21 to 28 days earlier than a conventional periodic regression technique. We have also tested using simulated anthrax attack data on top of a respiratory illness diagnostic category. Results show we do very well at detecting an attack as early as the second or third day after infected people start becoming severely symptomatic.

More Details

Neutron Contribution to CaF2:Mn Thermoluminescent Dosimeter Response in Mixed (n/y) Field Environments

Depriest, Kendall D.

Thermoluminescent dosimeters (TLDs), particularly CaF{sub 2}:Mn, are often used as photon dosimeters in mixed (n/{gamma}) field environments. In these mixed field environments, it is desirable to separate the photon response of a dosimeter from the neutron response. For passive dosimeters that measure an integral response, such as TLDs, the separation of the two components must be performed by post-experiment analysis because the TLD reading system cannot distinguish between photon and neutron produced response. Using a model of an aluminum-equilibrated TLD-400 chip, a systematic effort has been made to analytically determine the various components that contribute to the neutron response of a TLD reading. The calculations were performed for five measured reactor neutron spectra and one theoretical thermal neutron spectrum. The five measured reactor spectra all have dosimetry quality experimental values for aluminum-equilibrated TLD-400 chips. Calculations were used to determined the percentage of the total TLD response produced by neutron interactions in the TLD and aluminum equilibrator. These calculations will aid the Sandia National Laboratories-Radiation Metrology Laboratory (SNL-RML) in the interpretation of the uncertainty for TLD dosimetry measurements in the mixed field environments produced by SNL reactor facilities.

More Details

Effect of Weather on the Predicted PMN Landmine Chemical Signature for Kabul, Afghanistan

Webb, Stephen W.; Phelan, James M.

Buried landmines are often detected through the chemical signature in the air above the soil surface by mine detection dogs. Environmental processes play a significant role in the chemical signature available for detection. Due to the shallow burial depth of landmines, the weather influences the release of chemicals from the landmine, transport through the soil to the surface, and degradation processes in the soil. The effect of weather on the landmine chemical signature from a PMN landmine was evaluated with the T2TNT code for Kabul, Afghanistan. Results for TNT and DNT gas-phase and soil solid-phase concentrations are presented as a function of time of the day and time of the year.

More Details

On the Development of a Java-Based Tool for Multifidelity Modeling of Coupled Systems: LDRD Final Report

Gardner, David R.; Castro, Joseph P.; Hennigan, Gary L.; Gonzales, Mark A.; Young, Michael F.

This report describes research and development of methods to couple vastly different subsystems and physical models and to encapsulate these methods in a Java{trademark}-based framework. The work described here focused on developing a capability to enable design engineers and safety analysts to perform multifidelity, multiphysics analyses more simply. In particular this report describes a multifidelity algorithm for thermal radiative heat transfer and illustrates its performance. Additionally, it describes a module-based computer software architecture that facilitates multifidelity, multiphysics simulations. The architecture is currently being used to develop an environment for modeling the effects of radiation on electronic circuits in support of the FY 2003 Hostile Environments Milestone for the Accelerated Strategic Computing Initiative.

More Details

Quantitative Analysis of Microstructure in Polysiloxanes Using High Resolution Si29 NMR Spectroscopy: Investigation of Lot Variability in the LVM97 and HVM97 PDMS/PDPS Copolymers

Alam, Todd M.

The quantitative analysis of microstructure and sequence distribution in polysiloxane copolymers using high-resolution solution {sup 29}Si NMR is reported. Copolymers containing dimethylsiloxane (DMS) and diphenysiloxane (DPS) monomer units prepared with either high vinyl content (HVM) or low vinyl content (LVM) were analyzed. The average run length (R{sub exp}), the number average sequence length (l{sub A}, l{sub B}), along with the various linkage probabilities (p{sub AA}, p{sub AB}, p{sub BA}, and p{sub BB}) were determined for different production lots of the LVM97 and HVM97 samples to address the lot variability of microstructure in these materials.

More Details

Evolution of the Advanced Manufacturing Trades Training Program and the Advanced Technology Academy

Gallegos, Phillip L.; Forrest, Carla M.

In an effort to recruit and retain skilled workers in the Manufacturing Science and Technology Center (14000), an innovative and highly diverse team at Sandia National Laboratories and the U.S. Department of Energy joined with concerned community constitutents, such as Albuquerque Technical Vocational Institute and the Albuquerque Public Schools, to offer mentoring and on-the-job training to qualified students in high schools and community colleges. Now, within several years of its inception, the educational program called the Advanced Manufacturing Trades Training Program is a model in the community and the nation, while enabling Sandia to have valuable trained and skilled employees to meet its national mission and workforce demands.

More Details

Xyce Parallel Electronic Simulator - User's Guide, Version 1.0

Hutchinson, Scott A.; Keiter, Eric R.; Hoekstra, Robert J.; Waters, Lon J.; Russo, Thomas V.; Rankin, Eric R.; Wix, Steven D.

This manual describes the use of the Xyce Parallel Electronic Simulator code for simulating electrical circuits at a variety of abstraction levels. The Xyce Parallel Electronic Simulator has been written to support,in a rigorous manner, the simulation needs of the Sandia National Laboratories electrical designers. As such, the development has focused on improving the capability over the current state-of-the-art in the following areas: (1) Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). Note that this includes support for most popular parallel and serial computers. (2) Improved performance for all numerical kernels (e.g., time integrator, nonlinear and linear solvers) through state-of-the-art algorithms and novel techniques. (3) A client-server or multi-tiered operating model wherein the numerical kernel can operate independently of the graphical user interface (GUI). (4) Object-oriented code design and implementation using modern coding-practices that ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible far into the future. The code is a parallel code in the most general sense of the phrase--a message passing parallel implementation--which allows it to run efficiently on the widest possible number of computing platforms. These include serial, shared-memory and distributed-memory parallel as well as heterogeneous platforms. Furthermore, careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved even as the number of processors grows. Another feature required by designers is the ability to add device models, many specific to the needs of Sandia, to the code. To this end, the device package in the Xyce Parallel Electronic Simulator is designed to support a variety of device model inputs. These input formats include standard analytical models, behavioral models and look-up tables. Combined with this flexible interface is an architectural design that greatly simplifies the addition of circuit models. One of the most important contribution Xyce makes to the designers at Sandia National Laboratories is in providing a platform for computational research and development aimed specifically at the needs of the Laboratory. With Xyce, Sandia now has an ''in-house''capability with which both new electrical (e.g., device model development) and algorithmic (e.g., faster time-integration methods) research and development can be performed. Furthermore, these capabilities will then be migrated to the end users.

More Details

Automatic Design of Practical Fixtures

Trinkle, Jeffrey C.

Fixtures are tools used to hold parts in specific positions and orientations so that certain manufacturing steps can be carried out within required accuracies. Despite the importance of fixtures in the production of expensive devices at Sandia National Laboratories, there is little in-house expertise in mathematical design issues associated with fixtures. As a result, fixtures typically do not work as intended when they are first manufactured. Thus, an inefficient and expensive trial-and-error approach must be utilized. This design methodology adversely impacts important mission duties of Sandia National Laboratories, such as the production of neutron generators. The work performed under the support of this LDRD project took steps toward providing mechanical designers with software tools based on rigorous analytical techniques for dealing with fixture stability and tolerance stack-up.

More Details

A Four-Parameter Iwan Model for Lap-Type Joints

Segalman, Daniel J.

The constitutive behavior of mechanical joints is largely responsible for the energy dissipation and vibration damping in weapons systems. For reasons arising from the dramatically different length scales associated with those dissipative mechanisms and the length scales characteristic of the overall structure, this physics cannot be captured through direct numerical simulation (DNS) of the contact mechanics within a structural dynamics analysis. The difficulties of DNS manifest themselves either in terms of Courant times that are orders of magnitude smaller than that necessary for structural dynamics analysis or as intractable conditioning problems. The only practical method for accommodating the nonlinear nature of joint mechanisms within structural dynamic analysis is through constitutive models employing degrees of freedom natural to the scale of structural dynamics. In this way, development of constitutive models for joint response is a prerequisite for a predictive structural dynamics capability. A four-parameter model, built on a framework developed by Iwan, is used to reproduce the qualitative and quantitative properties of lap-type joints. In the development presented here, the parameters are deduced by matching experimental values of energy dissipation in harmonic loading and values of the force necessary to initiate macro-slip. (These experiments can be performed on real hardware or virtually via fine-resolution, nonlinear quasi-static finite elements.) The resulting constitutive model can then be used to predict the force/displacement results from arbitrary load histories.

More Details

Generalized Fourier Analyses of Semi-Discretizations of the Advection-Diffusion Equation

Christon, Mark A.; Voth, Thomas E.; Martinez, Mario J.

This report presents a detailed multi-methods comparison of the spatial errors associated with finite difference, finite element and finite volume semi-discretizations of the scalar advection-diffusion equation. The errors are reported in terms of non-dimensional phase and group speeds, discrete diffusivity, artificial diffusivity, and grid-induced anisotropy. It is demonstrated that Fourier analysis (aka von Neumann analysis) provides an automatic process for separating the spectral behavior of the discrete advective operator into its symmetric dissipative and skew-symmetric advective components. Further it is demonstrated that streamline upwind Petrov-Galerkin and its control-volume finite element analogue, streamline upwind control-volume, produce both an artificial diffusivity and an artificial phase speed in addition to the usual semi-discrete artifacts observed in the discrete phase speed, group speed and diffusivity. For each of the numerical methods considered, asymptotic truncation error and resolution estimates are presented for the limiting cases of pure advection and pure diffusion. The Galerkin finite element method and its streamline upwind derivatives are shown to exhibit super-convergent behavior in terms of phase and group speed when a consistent mass matrix is used in the formulation. In contrast, the CVFEM method and its streamline upwind derivatives yield strictly second-order behavior. While this work can only be considered a first step in a comprehensive multi-methods analysis and comparison, it serves to identify some of the relative strengths and weaknesses of multiple numerical methods in a common mathematical framework.

More Details
Results 88001–88200 of 96,771
Results 88001–88200 of 96,771