New Developments in RF Remote Sensing at Sandia
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in IEEE Microwave and Wireless Components Letters.
Abstract not provided.
This report describes the activities on the ''Ultra Miniaturization of RF'' project conducted as part of Sandia's Laboratory Directed Research and Development (LDRD) program. The objective was to evaluate a multichip module technology known as Microwave Chip on Flex (MCOF) [1], which is a newer form of the standard high density interconnect (HDI) technology originally developed by General Electric and Lockheed Martin [2,3]. The program was a three-year effort. In the first year, the team focused on understanding the technology and developing a basic design library. In the second year, devices and interconnects used at L, X, and Ku frequency bands were evaluated via a test coupon (with no application specific circuit design). In the third year, we designed, fabricated, and evaluated a specific Ku-band circuit. The circuit design and layout was performed by Sandia, and the module fabrication was performed by Lockheed Martin Government Electronic Systems. In MCOF technology [1], bare die are placed face down on an adhesive backed flex circuit. The first level of the circuit is a pre-patterned titanium copper thin film metal system on a polyimide dielectric material. The complete module is then framed and filled with an epoxy encapsulant. The module is flipped and via holes are laser drilled through subsequent interconnect layers. Each addition layer is adhered to the top of the module and laser drilling repeated. The baseline design consisted of the original pre-patterned layer plus two additional metal layers. The base of the module is then machined so the heat spreader and frame are planar for a good thermal and electrical connection to the next assembly. This report describes the efforts conducted to evaluate the technology and its applicability to Sandia RF systems.
Abstract not provided.
35th ARFTG Conference Digest - Spring 1990
In the testing of active microwave components, a common test procedure is to evaluate a device's performance when subjected to an all-phase, constant-standing-wave-ratio (APCS) load pull. Such a test specification is useful in verifying a device's stability and mismatch performance. Typically, APCS pulls are tediously performed by hand, with manually operated tuners. However, with the advent of mechanical, computer-controlled tuners, it is how possible to automate this procedure. At Sandia, the goal was to integrate an APCS pull capability into a multi-test, single-connection tester. (The single-connection concept implies that many test, such as network analysis, spectral analysis, and noise figure measurements can be made from a one-time, device-to-tester connection). Consequently, the slide-screw tuner was the obvious choice due to its removable probe capability. Hence, it became necessary to develop a custom algorithm capable of utilizing the tuner in an impedance-finding mode. The general concept used in implementing this capability was to empirically characterize the tuner over and acceptable range of tuner positions, and then use this characterization to intelligently predict the tuner positions needed to present the desired impedance. 4 figs.
33rd ARFTG Conference Digest - Spring 1989
An inherent aspect of active array radars is the use of large numbers -- typically hundreds -- of transmit/receive (T/R) modules. The implementation of this technology at Sandia has created new challenges for the tester designer. Foremost among these challenges is the need to design T/R module testers which can accommodate such large numbers of devices-under-test (DUTs). This task is complicated by the fact that state-of-the-art T/R modules are extremely sophisticated and require a broad spectrum of tests for adequate evaluation. The Sandia T/R module operates in Ku band and consists of a transmitter, receiver, programmable phase shifter, programmable attenuator, modulator, switched limiter, and gate-array controller. The programmable phase shifter is common to both the transmitter and receiver, but the attenuator is unique to the receiver. The instruments required for the tests include a network analyzer, a spectrum analyzer, a noise figure meter, a peak-power meter, and an automated tuner system. The key to a successful tester is in integrating all of the above instruments such that the desired measurements can all be performed from a single, two-port, tester-to-DUT connection. The natural consequence of such a design is that some measurements will have to be de-embedded from the integrated test setup. This paper addresses both the tester's instrument integration and the resulting de-embedding concerns. 2 figs.