Publications

17 Results

Search results

Jump to search filters

Large deformation solid-fluid interaction via a level set approach

Rao, Rekha R.; Noble, David R.; Schunk, Randy; Wilkes, Edward D.; Baer, Thomas A.; Notz, Patrick N.

Solidification and blood flow seemingly have little in common, but each involves a fluid in contact with a deformable solid. In these systems, the solid-fluid interface moves as the solid advects and deforms, often traversing the entire domain of interest. Currently, these problems cannot be simulated without innumerable expensive remeshing steps, mesh manipulations or decoupling the solid and fluid motion. Despite the wealth of progress recently made in mechanics modeling, this glaring inadequacy persists. We propose a new technique that tracks the interface implicitly and circumvents the need for remeshing and remapping the solution onto the new mesh. The solid-fluid boundary is tracked with a level set algorithm that changes the equation type dynamically depending on the phases present. This novel approach to coupled mechanics problems promises to give accurate stresses, displacements and velocities in both phases, simultaneously.

More Details

A level set approach to 3D mold filling of newtonian fluids

Proceedings of the ASME/JSME Joint Fluids Engineering Conference

Baer, Thomas A.; Noble, David R.; Rao, Rekha R.; Grillet, Anne M.

Filling operations, in which a viscous fluid displaces a gas in a complex geometry, occur with surprising frequency in many manufacturing processes. Difficulties in generating accurate models of these processes involve accurately capturing the interfacial boundary as it undergoes large motions and deformations, preventing dispersion and mass-loss during the computation, and robustly accounting for the effects of surface tension and wetting phenomena. This paper presents a numerical capturing algorithm using level set theory and finite element approximation. Important aspects of this work are addressing issues of mass-conservation and the presence of wetting effects. We have applied our methodology to a three-dimension model of a complicated filling problem. The simulated results are compared to experimental flow visualization data taken for filling of UCON oil in the identical geometry. Comparison of simulation and experiment indicates that the simulation conserved mass adequately and the simulated interface shape was in approximate agreement with experiment. Differences seen were largely attributed to inaccuracies in the wetting line model.

More Details

NMR measurements and simulations of particle migration in non-Newtonian fluids

Chemical Engineering Communications

Rao, Rekha R.; Mondy, L.A.; Baer, Thomas A.

Shear-induced migration of particles is studied during the slow flow of suspensions of neutrally buoyant spheres, at 50% particle volume fraction, in an inelastic but shear-thinning, suspending fluid. The suspension is flowing in between a rotating inner cylinder and a stationary outer cylinder. The conditions are such that nonhydrodynamic effects are negligible. Nuclear magnetic resonance (NMR) imaging demonstrates that the movement of particles away from the high shear rate region is more pronounced than for a Newtonian suspending liquid. We test a continuum constitutive model for the evolution of particle concentration in a flowing suspension proposed by Phillips et al., but extended to shear-thinning, suspending fluids. The fluid constitutive equation is Carreau-like in its shear-thinning behavior but also varies with the local particle concentration. The model captures many of the trends found in the experimental data, but does not yet agree quantitatively. In fact, quantitative agreement with a diffusive flux constitutive equation would be impossible without the addition of another fitting parameter that may depend on the shear-thinning nature of the suspending fluid. Because of this, we feel that the Phillips model may be fundamentally inadequate for simulating flows of particles in non-Newtonian suspending fluids without the introduction of a normal stress correction or other augmenting terms.

More Details

Rapid prototyping of patterned functional nanostructures

Nature

Fan, Hongyou; Lu, Yunfeng; Stump, Aaron; Reed, Scott T.; Baer, Thomas A.; Schunk, Randy; Perez-Luna, Victor; López, Gabriel P.; Brinker, C.J.

Living systems exhibit form and function on multiple length scales and at multiple locations. In order to mimic such natural structures, it is necessary to develop efficient strategies for assembling hierarchical materials. Conventional photolithography, although ubiquitous in the fabrication of microelectronics and microelectromechanical systems, is impractical for defining feature sizes below 0.1 micrometres and poorly suited to pattern chemical functionality. Recently, so-called 'soft' lithographic approaches have been combined with surfactant and particulate templating procedures to create materials with multiple levels of structural order. But the materials thus formed have been limited primarily to oxides with no specific functionality, and the associated processing times have ranged from hours to days. Here, using a self-assembling 'ink', we combine silica-surfactant self-assembly with three rapid printing procedures-pen lithography, ink-jet printing, and dip-coating of patterned self-assembled monolayers-to form functional, hierarchically organized structures in seconds. The rapid-prototyping procedures we describe are simple, employ readily available equipment, and provide a link between computer-aided design and self-assembled nanostructures. We expect that the ability to form arbitrary functional designs on arbitrary surfaces will be of practical importance for directly writing sensor arrays and fluidic or photonic systems.

More Details

Parallel Simulation of Three-Dimensional Free-Surface Fluid Flow Problems

Baer, Thomas A.; Subia, Samuel R.; Sackinger, Philip A.

We describe parallel simulations of viscous, incompressible, free surface, Newtonian fluid flow problems that include dynamic contact lines. The Galerlin finite element method was used to discretize the fully-coupled governing conservation equations and a ''pseudo-solid'' mesh mapping approach was used to determine the shape of the free surface. In this approach, the finite element mesh is allowed to deform to satisfy quasi-static solid mechanics equations subject to geometric or kinematic constraints on the boundaries. As a result, nodal displacements must be included in the set of problem unknowns. Issues concerning the proper constraints along the solid-fluid dynamic contact line in three dimensions are discussed. Parallel computations are carried out for an example taken from the coating flow industry, flow in the vicinity of a slot coater edge. This is a three-dimensional free-surface problem possessing a contact line that advances at the web speed in one region but transitions to static behavior in another part of the flow domain. Discussion focuses on parallel speedups for fixed problem size, a class of problems of immediate practical importance.

More Details

Freeforming of Ceramics and Composites from Colloidal Slurries

Cesarano, Joseph C.; Denham, Hugh B.; Stuecker, John N.; Baer, Thomas A.; Griffith, M.L.

This report is a summary of the work completed for an LDRD project. The objective of the project was to develop a solid freeform fabrication technique for ceramics and composites from fine particle slurries. The work was successful and resulted in the demonstration of a manufacturing technique called robocasting. Some ceramic components may pow be fabricated without the use of molds or tooling by dispensing colloidal suspensions through an orifice and stacking two-dimensional layers into three-dimensional shapes. Any conceivable two-dimensional pattern may be ''written'' layer by layer into a three-dimensional shape. Development of the robocasting technique required the materials expertise for fabrication and theological control of very highly concentrated fine particle slurries, and development of robotics for process control and optimization. Several ceramic materials have been manufactured and characterized. Development of techniques for robocasting multiple materials simultaneously have also been developed to build parts with unique structures or graded compositions.

More Details

Parallel Simulation of Three-Dimensional Free Surface Fluid Flow Problems

Baer, Thomas A.; Subia, Samuel R.; Sackinger, Philip A.

Simulation of viscous three-dimensional fluid flow typically involves a large number of unknowns. When free surfaces are included, the number of unknowns increases dramatically. Consequently, this class of problem is an obvious application of parallel high performance computing. We describe parallel computation of viscous, incompressible, free surface, Newtonian fluid flow problems that include dynamic contact fines. The Galerkin finite element method was used to discretize the fully-coupled governing conservation equations and a ''pseudo-solid'' mesh mapping approach was used to determine the shape of the free surface. In this approach, the finite element mesh is allowed to deform to satisfy quasi-static solid mechanics equations subject to geometric or kinematic constraints on the boundaries. As a result, nodal displacements must be included in the set of unknowns. Other issues discussed are the proper constraints appearing along the dynamic contact line in three dimensions. Issues affecting efficient parallel simulations include problem decomposition to equally distribute computational work among a SPMD computer and determination of robust, scalable preconditioners for the distributed matrix systems that must be solved. Solution continuation strategies important for serial simulations have an enhanced relevance in a parallel coquting environment due to the difficulty of solving large scale systems. Parallel computations will be demonstrated on an example taken from the coating flow industry: flow in the vicinity of a slot coater edge. This is a three dimensional free surface problem possessing a contact line that advances at the web speed in one region but transitions to static behavior in another region. As such, a significant fraction of the computational time is devoted to processing boundary data. Discussion focuses on parallel speed ups for fixed problem size, a class of problems of immediate practical importance.

More Details

A Finite Element Method for Free-Surface Flows of Incompressible Fluids in Three Dimensions, Part II: Dynamic Wetting Lines

International Journal for Numerical Methods in Fluids

Baer, Thomas A.

To date, few researchers have solved three-dimensional free-surface problems with dynamic wetting lines. This paper extends the free-surface finite element method described in a companion paper [Cairncross, R.A., P.R. Schunk, T.A. Baer, P.A. Sackinger, R.R. Rao, "A finite element method for free surface flows of incompressible fluid in three dimensions, Part I: Boundary-Fitted mesh motion.", to be published (1998)] to handle dynamic wetting. A generalization of the technique used in two dimensional modeling to circumvent double-valued velocities at the wetting line, the so-called kinematic paradox, is presented for a wetting line in three dimensions. This approach requires the fluid velocity normal to the contact line to be zero, the fluid velocity tangent to the contact line to be equal to the tangential component of web velocity, and the fluid velocity into the web to be zero. In addition, slip is allowed in a narrow strip along the substrate surface near the dynamic contact line. For realistic wetting-line motion, a contact angle which varies with wetting speed is required because contact lines in three dimensions typically advance or recede a different rates depending upon location and/or have both advancing and receding portions. The theory is applied to capillary rise of static fluid in a corner, the initial motion of a Newtonian droplet down an inclined plane, and extrusion of a Newtonian fluid from a nozzle onto a moving substrate. The extrusion results are compared to experimental visualization. Subject Categories

More Details
17 Results
17 Results