FIELD DATA COLLECTION FOR QUANTIFICATION OF RELIABILITY AND AVAILABILITY FOR PHOTOVOLTAIC SYSTEMS
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This document provides the Technical Safety Requirements (TSR) for the Sandia National Laboratories Gamma Irradiation Facility (GIF). The TSR is a compilation of requirements that define the conditions, the safe boundaries, and the administrative controls necessary to ensure the safe operation of a nuclear facility and to reduce the potential risk to the public and facility workers from uncontrolled releases of radioactive or other hazardous materials. These requirements constitute an agreement between DOE and Sandia National Laboratories management regarding the safe operation of the Gamma Irradiation Facility.
This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.
Abstract not provided.
This paper demonstrates the use of appropriate consequence evaluation criteria in conjunction with generic likelihood of occurrence data to produce consistent hazard analysis results for nonreactor nuclear facility Safety Analysis Reports (SAR). An additional objective is to demonstrate the use of generic likelihood of occurrence data as a means for deriving defendable accident sequence frequencies, thereby enabling the screening of potentially incredible events (<10{sup {minus}6} per year) from the design basis accident envelope. Generic likelihood of occurrence data has been used successfully in performing SAR hazard and accident analyses for two nonreactor nuclear facilities at Sandia National Laboratories. DOE-STD-3009-94 addresses and even encourages use of a qualitative binning technique for deriving and ranking nonreactor nuclear facility risks. However, qualitative techniques invariably lead to reviewer requests for more details associated with consequence or likelihood of occurrence bin assignments in the test of the SAR. Hazard analysis data displayed in simple worksheet format generally elicits questions about not only the assumptions behind the data, but also the quantitative bases for the assumptions themselves (engineering judgment may not be considered sufficient by some reviewers). This is especially true where the criteria for qualitative binning of likelihood of occurrence involves numerical ranges. Oftentimes reviewers want to see calculations or at least a discussion of event frequencies or failure probabilities to support likelihood of occurrence bin assignments. This may become a significant point of contention for events that have been binned as incredible. This paper will show how the use of readily available generic data can avoid many of the reviewer questions that will inevitably arise from strictly qualitative analyses, while not significantly increasing the overall burden on the analyst.
Despite evidence of significant management contributions to the causes of major accidents, recent events at Millstone Nuclear Power Station in the US and Ontario Hydro in Canada might lead one to conclude that the significance of safety culture, and the role of management in developing and maintaining an appropriate safety culture, is either not being understood or not being taken serious as integral to the safe operation of some complex, high-reliability operations. It is the purpose of this paper to address four aspects of management that are particularly important to safety culture, and to illustrate how development of an appropriate safety culture is more a matter of common sense than rocket science.
Little guidance has been provided by the DOE for developing appropriate Operational Safety Requirements (OSR) for non-nuclear facility safety documents. For a period of time, Chapter 2 of DOE/AL Supplemental Order 5481.lB provided format guidance for non-reactor nuclear facility OSRs when this supplemental order applied to both nuclear and non-nuclear facilities. Thus, DOE Albuquerque Operations Office personnel still want to see non-nuclear facility OSRs in accordance with the supplemental order (i.e., in terms of Safety Limits, Limiting Conditions for Operation, and Administrative Controls). Furthermore, they want to see a clear correlation between the OSRs and the results of a facility safety analysis. This paper demonstrates how OSRs can be rather simply derived from the results of a risk assessment performed using the ``binning`` methodology of SAND95-0320.
The purpose of the Programmatic Risk Management System (PRMS) is to evaluate and manage potential risks associated with proposed projects (i.e., new products or processes, or possible research and technological development projects). Although the PRMS considers some technical aspects of risk, the primary focus of the methodology is programmatic risk. That is, the methodology permits an assessment of risks associated with such issues as the ability to successfully produce a product that performs in accordance with all customer requirements, and the availability and allocation of resources (money, equipment, facilities, skilled personnel). The PRMS process consists of five formalized activities that are essential for effective management of risks associated with proposed projects. These activities include risk assessment, development of appropriate risk mitigation strategies, estimating strategy implementation cost, ranking of risk mitigation strategies for resource allocation, and scheduling of strategy implementing. The PRMS utilizes a ranking system that allows the user to identify the most cost-effective investment of resources of minimizing risk.
The purpose of this document is to describe a qualitative risk assessment process that supplements the requirements of DOE/AL 5481.1B. Although facility managers have a choice of assessing risk either quantitatively or qualitatively, trade offs are involved in making the most appropriate choice for a given application. The results that can be obtained from a quantitative risk assessment are significantly more robust than those results derived from a qualitative approach. However, the advantages derived from quantitative risk assessment are achieved at a greater expenditure of money, time and convenience. This document provides the elements of a framework for performing a much less costly qualitative risk assessment, while retaining the best attributes of quantitative methods. The approach discussed herein will; (1) provide facility managers with the tools to prepare consistent, site wide assessments, and (2) aid the reviewers who may be tasked to evaluate the assessments. Added cost/benefit measures of the qualitative methodology include the identification of mechanisms for optimally allocating resources for minimizing risk in an expeditious, and fiscally responsible manner.
This document is intended to be a resource for preparers of safety documentation for Sandia National Laboratories, New Mexico facilities. It provides standardized discussions of some topics that are generic to most, if not all, Sandia/NM facilities safety documents. The material provides a ``core`` upon which to develop facility-specific safety documentation. The use of the information in this document will reduce the cost of safety document preparation and improve consistency of information.