Deep X-ray lithography based techniques such as LIGA (German acronym representing Lithographie, Galvanoformung, and Abformung) are being currently used to fabricate net-shape components for microelectromechanical systems (MEMS). Unlike other microfabrication techniques, LIGA lends itself to a broad range of materials, including metals, alloys, polymers, as well as ceramics and composites. Currently, Ni and Ni alloys are the materials of choice for LIGA microsystems. While Ni alloys may meet the structural requirements for MEMS, their tribological (friction and wear) behavior poses great challenges for the reliable operation of LIGA-fabricated MEMS. Typical sidewall morphologies of LIGA-fabricated parts are described, and their role in the tribological behavior of MEMS is discussed. The adaptation of commercial plasma-enhanced chemical vapor deposition to coat the sidewalls of LIGA-fabricated parts with diamond-like nanocomposite is described.
Retinal prosthesis projects around the world have been pursuing a functional replacement system for patients with retinal degeneration. In this paper, the concept for a micromachined conformal electrode array is outlined. Individual electrodes are designed to float on micromachined springs on a substrate that will enable the adjustment of spring constants-and therefore contact force-by adjusting the dimensions of the springs at each electrode. This also allows the accommodation of the varying curvature/topography of the retina. We believe that this approach provides several advantages by improving the electrode/tissue interface as well as generating some new options for in-situ measurements and overall system design.
This report summarizes materials issues associated with advanced micromachines development at Sandia. The intent of this report is to provide a perspective on the scope of the issues and suggest future technical directions, with a focus on computational materials science. Materials issues in surface micromachining (SMM), Lithographic-Galvanoformung-Abformung (LIGA: lithography, electrodeposition, and molding), and meso-machining technologies were identified. Each individual issue was assessed in four categories: degree of basic understanding; amount of existing experimental data capability of existing models; and, based on the perspective of component developers, the importance of the issue to be resolved. Three broad requirements for micromachines emerged from this process. They are: (1) tribological behavior, including stiction, friction, wear, and the use of surface treatments to control these, (2) mechanical behavior at microscale, including elasticity, plasticity, and the effect of microstructural features on mechanical strength, and (3) degradation of tribological and mechanical properties in normal (including aging), abnormal and hostile environments. Resolving all the identified critical issues requires a significant cooperative and complementary effort between computational and experimental programs. The breadth of this work is greater than any single program is likely to support. This report should serve as a guide to plan micromachines development at Sandia.
A microfabrication process is described that provides for the batch realization of miniature rare earth based permanent magnets. Prismatic geometry with features as small as 5 microns, thicknesses up through several hundred microns and with submicron tolerances may be accommodated. The processing is based on a molding technique using deep x-ray lithography as a means to generate high aspect-ratio precision molds from PMMA (poly methyl methacrylate) used as an x-ray photoresist. Subsequent molding of rare-earth permanent magnet (REPM) powder combined with a thermosetting plastic binder may take place directly in the PMMA mold. Further approaches generate an alumina form replicated from the PMMA mold that becomes an intermediate mold for pressing higher density REPM material and allows for higher process temperatures. Maximum energy products of 3--8 MGOe (Mega Gauss Oersted, 1 MGOe = 100/4{pi} kJ/m{sup 3}) are obtained for bonded isotropic forms of REPM with dimensions on the scale of 100 microns and up to 23 MGOe for more dense anisotropic REPM material using higher temperature processing. The utility of miniature precision REPMs is revealed by the demonstration of a miniature multipole brushless DC motor that possesses a pole-anisotropic rotor with dimensions that would otherwise prohibit multipole magnetization using a multipole magnetizing fixture at this scale. Subsequent multipole assembly also leads to miniaturized Halbach arrays, efficient magnetic microactuators, and mechanical spring-like elements which can offset miniaturized mechanical scaling behavior.
Silicon (Si) has a strength to density ratio of 3.0({sigma}{sub y}/{delta}=(6.8GPa/2.3g/cc)), an order-of-magnitude higher than titanium, aluminum, or stainless steel. Silicon also demonstrates favorable thermal, optical, and electrical properties making it ideal for use as a structural foundation for autonomous, mesoscopic systems such as nanosatellites. Using Si substrates, a structure that can simultaneously act as a thermal management system, a radiation shield, an optical material, a package, and a semiconductor substrate can be realized.
Precision high aspect-ratio micro molds constructed by deep x-ray lithography have been used to batch fabricate accurately shaped bonded rare-earth based permanent magnets with features as small as 5 microns and thicknesses up to 500 microns. Maximum energy products of up to 8 MGOe have been achieved with a 20%/vol. epoxy bonded melt-spun isotropic Nd2Fe14b powder composite. Using individually processed sub- millimeter permanent sections multipole rotors have been assembled. Despite the fact that these permanent magnet structures are small, their magnetic field producing capability remains the same as at any scale. Combining permanent magnet structures with soft magnetic materials and micro-coils makes possible new and more efficient magnetic microdevices.
A test technique has been devised which is suitable for the testing of the bond strength of batch diffusion bonded LIGA or DXRL defined structures. The method uses a torsion tester constructed with the aid of LIGA fabrication and distributed torsion specimens which also make use of the high aspect ratio nature of DXRL based processing. Measurements reveal achieved bond strengths of 130MPa between electroplated nickel with a bond temperature of 450 C at 7 ksi pressure which is a sufficiently low temperature to avoid mechanical strength degradation.
A technique using diffusion bonding (or solid-state welding) has been used to achieve batch fabrication of two- level nickel LIGA structures. Interlayer alignment accuracy of less than 1 micron is achieved using press-fit gauge pins. A mini-scale torsion tester was built to measure the diffusion bond strength of LIGA formed specimens that has shown successful bonding at temperatures of 450"C at 7 ksi pressure with bond strength greater than 100 Mpa. Extensions to this basic process to allow for additional layers and thereby more complex assemblies as well as commensurate packaging are discussed.
A table top servohydraulic load frame equipped with a laser displacement measurement system was constructed for the mechanical characterization of LIGA fabricated electroforms. A drop-in tensile specimen geometry which includes a pattern to identify gauge length via laser scanning has proven to provide a convenient means to monitor and characterize mechanical property variations arising during processing. In addition to tensile properties, hardness and metallurgical data were obtained for nickel deposit specimens of current density varying between 20 and 80 mA/cm2 from a sulfamate based bath. Data from 80/20 nickel/iron deposits is also presented for comparison. As expected, substantial mechanical property differences from bulk metal properties are observed as well as a dependence of material strength on current density which is supported by grain size variation. While elastic modulus values of the nickel electrodeposit are near 160 GPa, yield stress values vary by over 60%. A strong orientation in the metal electrodeposits as well as variations in nucleating and growth morphology present a concern for anisotropic and geometry dependent mechanical properties within and between different LIGA components.
Extensions of the German LIGA process have brought about fabrication capability suitable for cost effective production of precision engineered components. The process attributes allow fabrication of mechanical components which are not capable of being made via conventional subtractive machining methods. Two process improvements have been responsible for this extended capability which involve the areas of thick photoresist application and planarization via precision lapping. Application of low-stress x-ray photoresist has been achieved using room temperature solvent bonding of a preformed photoresist sheet. Precision diamond lapping and polishing has provided a flexible process for the planarization of a wide variety of electroplated metals in the presence of photoresist. Exposure results from the 2.5 GeV National Synchrotron Light Source storage ring at Brookhaven National Laboratory have shown that structural heights of several millimeter and above are possible. The process capabilities are also well suited for microactuator fabrication. Linear and rotational magnetic microactuators have been constructed which use coil winding technology with LIGA fabricated coil forms. Actuator output forces of 1 milliNewton have been obtained with power dissipation on the order of milliWatts. A rotational microdynamometer system which is capable of measuring torque-speed data is also discussed.
Deep x-ray lithography based fabrication provides a means to fabricate microactuators with useful output forces. High energy x-ray exposure provides a tool for fabrication of the next generation of precision engineered components. Device characterization, materials science, an metrology continue to pose challenges at this scale.