Publications

19 Results

Search results

Jump to search filters

Control of photonic package alignment with asynchronous laser spot welds

IEEE Transactions on Electronics Packaging Manufacturing

Fuerschbach, Phillip W.

The precise alignment of an optical fiber to a laser diode for maximum optical coupling is often accomplished with synchronous laser spot welds in three symmetric locations. To improve precision and reduce operational complexity, the utility of single-beam spot welds made in an asynchronous manner has been investigated. Independent measurements of fiber tip post weld shift have been made using eddy current sensors and CCD camera imaging analysis. For the cylindrical radially aligned Kovar ferrules examined, post weld shift has been found to be independent of both the location and number of prior spot welds. Post weld shift direction has been shown to be relatively consistent and predictable when the fiber containing ferrule is properly restrained. It has been demonstrated that through the application of an axial restraining force on radially aligned ferrules, post weld shift can be reduced to less than 2 μm. Analytical equations have been presented that predict the magnitude of the measured post weld shift and also serve to guide engineers in optimal design geometries and preferred welding conditions. © 2008 IEEE.

More Details

Thin plate gap bridging study for Nd:YAG pulsed laser lap welds

Norris, J.T.; Roach, R.A.; Fuerschbach, Phillip W.; Bernal, John E.

In an on going study of gap bridging for thin plate Nd:YAG laser lap welds, empirical data, high speed imaging, and computer modeling were utilized to better understand surface physics attributed to the formation and solidification of a weld pool. Experimental data indicates better gap bridging can be achieved through optimized laser parameters such as pulse length, duration, and energy. Long pulse durations at low energies generating low peak powers were found to create the highest percent of gap bridging ability. At constant peak power, gap-bridging ability was further improved by using a smaller spot diameter resulting in higher irradiances. Hence, welding in focus is preferable for bridging gaps. Gas shielding was also found to greatly impact gap-bridging ability. Gapped lap welds that could not be bridged with UHP Argon gas shielding, were easily bridged when left unshielded and exposed to only air. Incident weld angle and joint offset were also investigated for their ability to improve gap bridging. Optical filters and brightlight surface illumination enabled high-speed imaging to capture the fluid dynamics of a forming and solidifying weld pool. The effects of various laser parameters and the weld pool's interaction with the laser beam could also be observed utilizing the high-speed imaging. The work described is used to develop and validate a computer model with improved weld pool physics. Finite element models have been used to derive insight into the physics of gap bridging. The dynamics of the fluid motion within the weld pool in conjunction with the free surface physics have been the primary focus of the modeling efforts. Surface tension has been found to be a more significant factor in determining final weld pool shape than expected.

More Details

Thin plate gap bridging study for Nd:YAG pulsed laser lap welds

ASM Proceedings of the International Conference: Trends in Welding Research

Norris, J.T.; Roach, R.A.; Fuerschbach, Phillip W.; Bernal, J.

Gap bridging of thin plate pulsed Nd:YAG lap welds is optimized by focused welding at low peak powers without gas shielding. High speed images reveal effects of varying welding parameters and weld pool and laser beam interactions. Improved bridging with out gas shielding is attributed to changes in Marangoni convective flow. Development and verification of finite element models for weld pool physics is being conducted. Copyright © 2006 ASM International®.

More Details

SOAR : science-based weld software for optimal automatic welding procedures

Fuerschbach, Phillip W.; Eisler, G.R.

The two primary uses for SOAR are: (1) Predictive--(i) Science based process models enable optimized automated weld procedures, (ii) virtual manufacturing enables the user to ask 'what if' and quickly find the answer, (iii) with SOAR, multiple welds do not need to be made in order to determine weld effects and required parameters; and (2) Investigative--(i) welding problem mysteries can be solved by gathering evidence, identifying problem suspects, and testing with SOAR; (ii) most SOAR models are universal and can be applied to many different weld processes; and (iii) understand your welding process.

More Details

Alloying element vaporization during laser spot welding of stainless steel

Proposed for publication in Journal of Physics D.

Fuerschbach, Phillip W.; Fuerschbach, Phillip W.

Alloying element loss from the weld pool during laser spot welding of stainless steel was investigated experimentally and theoretically. The experimental work involved determination of work-piece weight loss and metal vapor composition for various welding conditions. The transient temperature and velocity fields in the weld pool were numerically simulated. The vaporization rates of the alloying elements were modeled using the computed temperature profiles. The fusion zone geometry could be predicted from the transient heat transfer and fluid flow model for various welding conditions. The laser power and the pulse duration were the most important variables in determining the transient temperature profiles. The velocity of the liquid metal in the weld pool increased with time during heating and convection played an increasingly important role in the heat transfer. The peak temperature and velocity increased significantly with laser power density and pulse duration. At very high power densities, the computed temperatures were higher than the boiling point of 304 stainless steel. As a result, evaporation of alloying elements was caused by both the total pressure and the concentration gradients. The calculations showed that the vaporization occurred mainly from a small region under the laser beam where the temperatures were very high. The computed vapor loss was found to be lower than the measured mass loss because of the ejection of tiny metal droplets owing to the recoil force exerted by the metal vapours. The ejection of metal droplets has been predicted by computations and verified by experiments.

More Details

Understanding metal vaporizaiton from laser welding

Fuerschbach, Phillip W.; Norris, J.T.

The production of metal vapor as a consequence of high intensity laser irradiation is a serious concern in laser welding. Despite the widespread use of lasers in manufacturing, little fundamental understanding of laser/material interaction in the weld pool exists. Laser welding experiments on 304 stainless steel have been completed which have advanced our fundamental understanding of the magnitude and the parameter dependence of metal vaporization in laser spot welding. Calculations using a three-dimensional, transient, numerical model were used to compare with the experimental results. Convection played a very important role in the heat transfer especially towards the end of the laser pulse. The peak temperatures and velocities increased significantly with the laser power density. The liquid flow is mainly driven by the surface tension and to a much less extent, by the buoyancy force. Heat transfer by conduction is important when the liquid velocity is small at the beginning of the pulse and during weld pool solidification. The effective temperature determined from the vapor composition was found to be close to the numerically computed peak temperature at the weld pool surface. At very high power densities, the computed temperatures at the weld pool surface were found to be higher than the boiling point of 304 stainless steel. As a result, vaporization of alloying elements resulted from both total pressure and concentration gradients. The calculations showed that the vaporization was concentrated in a small region under the laser beam where the temperature was very high.

More Details

Heat transfer and fluid flow during laser spot welding of 304 stainless steel

Journal of Physics D: Applied Physics

He, X.; Fuerschbach, Phillip W.; DebRoy, T.

The evolution of temperature and velocity fields during laser spot welding of 304 stainless steel was studied using a transient, heart transfer and fluid flow model based on the solution of the equations of conservation of mass, momentum and energy in the weld pool. The weld pool geometry, weld thermal cycles and various solidification parameters were calculated. The fusion zone geometry, calculated from the transient heat transfer and fluid flow model, was in good agreement with the corresponding experimentally measured values for various welding conditions. Dimensional analysis was used to understand the importance of heat transfer by conduction and convection and the roles of various driving forces for convection in the weld pool. During solidification, the mushy zone grew at a rapid rate and the maximum size of the mushy zone was reached when the pure liquid region vanished. The solidification rate of the mushy zone/liquid interface was shown to increase while the temperature gradient in the liquid zone at this interface decreased as solidification of the weld pool progressed. The heating and cooling rates, temperature gradient and the solidification rate at the mushy zone/liquid interface for laser spot welding were much higher than those for the moving and spot gas tungsten arc welding.

More Details

Laser Assisted Micro Wire GMAW and Droplet Welding

Fuerschbach, Phillip W.; Bertram, Lee A.; Anderson, Robert A.

Laser beam welding is the principal welding process for the joining of Sandia weapon components because it can provide a small fusion zone with low overall heating. Improved process robustness is desired since laser energy absorption is extremely sensitive to joint variation and filler metal is seldom added. This project investigated the experimental and theoretical advantages of combining a fiber optic delivered Nd:YAG laser with a miniaturized GMAW system. Consistent gas metal arc droplet transfer employing a 0.25 mm diameter wire was only obtained at high currents in the spray transfer mode. Excessive heating of the workpiece in this mode was considered an impractical result for most Sandia micro-welding applications. Several additional droplet detachment approaches were investigated and analyzed including pulsed tungsten arc transfer(droplet welding), servo accelerated transfer, servo dip transfer, and electromechanically braked transfer. Experimental observations and rigorous analysis of these approaches indicate that decoupling droplet detachment from the arc melting process is warranted and may someday be practical.

More Details

Role of beam absorption in plasma during laser welding

Journal of Physics D: Applied Physics

Fuerschbach, Phillip W.; Damkroger, Brian K.

The relationship between beam focus position and penetration depth in CW laser welding was studied numerically and experimentally for different welding conditions. Calculations were performed using a transient hydrodynamic model that incorporates the effect of evaporation recoil pressure and the associated melt expulsion. The simulation results are compared with measurements made on a series of test welds obtained using a 1650 W CO2 laser. The simulations predict, and the experiments confirm, that maximum penetration occurs with a specific location of the beam focus, with respect to the original sample surface, and that this relationship depends on the processing conditions. In particular, beam absorption in the plasma has a significant effect on the relationship between penetration and focus position. When the process parameters result in strong beam absorption in the keyhole plasma, the maximum penetration will occur when the laser focus is at or above the sample surface. In a case of weak absorption however, the penetration depth reaches its maximum value when the beam focus is located below the sample surface. In all cases, the numerical results are in good agreement with the experimental measurements.

More Details

Laser assisted arc welding for aluminum alloys

Fuerschbach, Phillip W.

Experiments have been performed using a coaxial end-effector to combine a focused laser beam and a plasma arc. The device employs a hollow tungsten electrode, a focusing lens, and conventional plasma arc torch nozzles to co-locate the focused beam and arc on the workpiece. Plasma arc nozzles were selected to protect the electrode from laser generated metal vapor. The project goal is to develop an improved fusion welding process that exhibits both absorption robustness and deep penetration for small scale (<1.5 mm thickness) applications. On aluminum alloys 6061 and 6111, the hybrid process has been shown to eliminate hot cracking in the fusion zone. Fusion zone dimensions for both stainless steel and aluminum were found to be wider than characteristic laser welds, and deeper than characteristic plasma arc welds.

More Details

Laser Assisted Plasma Arc Welding

Fuerschbach, Phillip W.

Experiments have been performed using a coaxial end-effecter to combine a focused laser beam and a plasma arc. The device employs a hollow tungsten electrode, a focusing lens, and conventional plasma arc torch nozzles to co-locate the focused beam and arc on the workpiece. Plasma arc nozzles were selected to protect the electrode from laser generated metal vapor. The project goal is to develop an improved fusion welding process that exhibits both absorption robustness and deep penetration for small scale (< 1.5 mm thickness) applications. On aluminum alloys 6061 and 6111, the hybrid process has been shown to eliminate hot cracking in the fusion zone. Fusion zone dimensions for both stainless steel and aluminum were found to be wider than characteristic laser welds, and deeper than characteristic plasma arc welds.

More Details

Laser assisted non-consumable arc welding process development

Fuerschbach, Phillip W.

The employment of Laser Beam Welding (LBW) for many traditional arc welding applications is often limited by the inability of LBW to compensate for variations in the weld joint gap. This limitation is associated with fluctuations in the energy transfer efficiency along the weld joint. Since coupling of the laser beam to the workpiece is dependent on the maintenance of a stable absorption keyhole, perturbations to the weld pool can lead to decreased energy transfer and resultant weld defects. Because energy transfer in arc welding does not similarly depend on weld pool geometry, it is expected that combining these two processes together will lead to an enhanced fusion welding process that exhibits the advantages of both arc welding and LBW. Laser assisted non-consumable arc welds have been made on thin section aluminum. The welds combine the advantages of arc welding and laser welding, with enhanced penetration and fusion zone size. The use of a pulsed Nd:YAG laser with the combined process appears to be advantageous since this laser is effective in removing the aluminum oxide and thereby allowing operation with the tungsten electrode negative. The arc appears to increase the size of the weld and also to mitigate hot cracking tendencies that are common with the pulsed Nd:YAG laser.

More Details

Variation of laser energy transfer efficiency with well pool depth

Fuerschbach, Phillip W.

A series of CO{sub 2} laser welds were made at a constant beam irradiance of 6 MW/cm{sup 2} on 304 stainless steel with travel speeds selected to produce welds with varying levels of weld penetration. Using a Seebeck envelope calorimeter, the net heat input to the part was measured for each weld. It was found that the energy transfer efficiencies varied from 0.29 to 0.86, and decreased at high travel speeds where the weld penetration depth was as shallow as 0.13 mm. The decrease in beam absorption with decreasing weld pool depth is consistent with an absorption mechanism that requires multiple internal reflections within the weld pool. Equations have been developed which conn -ct the keyhole cavity dimensions with the energy transfer efficiency, and correlations with the experimental data have determined the keyhole cavity radius to be 0.1 mm for a focused laser beam with a spot radius of 0.059 mm.

More Details

Application of a dimensionless parameter model for Laser Beam Welding

Fuerschbach, Phillip W.

A new dimensionless parameter model for continuous wave laser welding that relates the size of the weld to the energy absorbed by the part is described. The model has been experimentally validated previously through calorimetric determinations of the net heat input and metallographic measurements of the weld size. It will be shown that both the melting efficiency and energy transfer efficiency for LBW are quite variable and need to be considered when selecting processing conditions. Specific applications will be detailed in order to observe the simplicity and value of the model in laser weld process development. It will be shown that by using certain dimensionless parameters one can determine the energy transfer efficiency and thereby correctly select processing conditions that more fully utilize the available laser output power. In applications where minimizing heat input to the surrounding weldment is paramount, the dimensionless parameters can be used to select conditions that maximize melting efficiency.

More Details

Melting efficiency in fusion welding

Fuerschbach, Phillip W.

Basic to our knowledge of the science of welding is an understanding of the melting efficiency, which indicates how much of the heat deposited by the welding process is used to produce melting. Recent calorimetric studies of GTAW, PAW, and LBW processes have measured the net heat input to the part thereby quantifying the energy transfer efficiency and in turn permitting an accurate determination of the melting efficiency. It is indicated that the weld process variables can dramatically affect the melting efficiency. This limiting value is shown to depend on the weld heat flow geometry as predicted by analytical solutions to the heat flow equation and as demonstrated by the recent empirical data. A new dimensionless parameter is used to predict the melting efficiency and is shown to correlate extremely well with recent empirical data. This simple prediction methodology is notable because it requires only a knowledge of the weld schedule and the material properties in order to estimate melting efficiency. 22 refs., 16 figs.

More Details

Calorimetric measurements of energy transfer efficiency and melting efficiency in CO sub 2 laser beam welding

Fuerschbach, Phillip W.

Our previous calorimetric studies of weld melting efficiency and arc efficiency in the GTAW and PAW processes have naturally led us to speculate as to the magnitude of the efficiencies in the LBW process which to data have also not been adequately investigated. Most welding engineers that have had experience with the LBW process are acutely aware that the metals' absorptivity, the surface finish, and the laser wavelength, all play an important role in affecting the energy transfer efficiency, but the extent of their influence and our understanding of the influence of other process variables is not well understood. In addition, it is widely thought that only the LBW or EBW processes can be selected for applications where thermal damage and distortion from the welding process must be kept to a minimum. For these reasons, we have looked forward to performing these calorimetric experiments since they potentially can answer such important questions as: whether or not the melting efficiency of the LBW process is superior to that obtainable with conventional GTAW and PAW welding processes This study was prompted by poor production yields on switching device due to cracking of the ceramic header after final closure welding with the CO{sub 2} LBW process. This calorimetric study was begun in hopes of determining if allowed variations in production process control variables were responsible for increases in heat input and the resulting thermal stresses. By measuring the net heat input to the workpiece with the calorimeter and by measuring the laser output energy and the weld fusion zone size it was possible to determine the magnitudes of both the energy transfer efficiency and the melting efficiency as well as observe their dependence on the process variables. 3 refs.

More Details
19 Results
19 Results