Survey of plasma diagnostic techniques applicable to radiographic diodes
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in IEEE Photonics Technology Letters.
Abstract not provided.
Proposed for publication in Polymer.
Abstract not provided.
This report describes development of a system that provides high-speed, real-time downhole data while drilling. Background of the project, its benefits, major technical challenges, test planning, and test results are covered by relatively brief descriptions in the body of the report, with some topics presented in more detail in the attached appendices.
The Salt Valve and Instrumentation Test was done to provide data on equipment performance in high temperature environments similar to that expected in the next large scale application of that technology. The experiment tested three different valves: (1) a valve with the standard valve body and standard high temperature self-packing material; (2) a valve with the standard valve body and stainless steel O-rings; and (3) a magnetic valve that uses a high temperature coil and no packing material. The first valve, which was used at Solar Two, performed sufficiently throughout the test with only a small leak from the split-body, not the packing material, on the 6th day of testing on the long-term test. The second valve, with the stainless steel O-rings, developed a small leak on the last run of the third test at the bonnet (packing material), at which point it was noted to watch if it got worse and the test continued. By the 6th day of the long-term test, the leak was significant (up to 3 cups per day) and the test was terminated. The magnetic valve failed when exposed to a relatively low temperature of 500 F. According to the manufacturer, it was expected to survive up to temperatures of 600 F. Two different pressure transducers were tested and compared, Taylor and Dynisco. The Taylor pressure transducer was used and proven successful at Solar Two. However, they are no longer made. Therefore the experiment tested a new pressure transducer from Dynisco and compared the results to that of the Taylor. The Dynisco pressure transducer performed inaccurately from the beginning. The pressure transducer was affected by an increase in temperature when the pressure remained the same. Dynisco agreed to recalibrate the pressure transducer and/or send us a new one if the piece was faulty. However, in the process of removing the piece from the system, due to the high temperatures used, the piece had gulled with the stainless-steel piping and broke. Flared fittings versus Swagelock fittings were tested in the experiment as well. Both fittings showed no signs of any leakage when exposed to the high temperatures and corrosive environment. The existing test set-up for the Nagle Long Shafted Pump was used in this experiment and additional test hours were obtained on the pump bearings. However, only 132 hours (5 1/2 days) of the 5000 hours (208 days) were performed due to a salt leak, which required removal of insulation. The experiment had to be terminated prior to removal of the insulation.
Proposed for publication in Canadian Society of Petroleum Geologists Bulletin.
Abstract not provided.
Proposed for prublication in Acta Cryst. E.
Abstract not provided.
Proposed for publication in Acta Crystallographica.
Abstract not provided.
Abstract not provided.
SNL is developing intense sources for flash x-ray radiography. The goals of the experiments presented here were to assess power flow issues and to help benchmark the LSP particle-in-cell code used to design the experiment. Comparisons between LSP simulations and experimental data are presented.
Abstract not provided.
Abstract not provided.
Abstract not provided.
A new laser trigger system (LTS) has been installed on Z that benefits the experimenter with reduced temporal jitter on the x-ray output, the confidence to use command triggers for time sensitive diagnostics and the ability to shape the current pulse at the load. This paper presents work on the pulse shapping aspects othe the new LTS.
Abstract not provided.
Proposed for publication in the Journal of 40R.
Abstract not provided.
The use of laser diodes in devices to ignite pyrotechnics provides unique new capabilities including the elimination of electrostatic discharge (ESD) pulses entering the device. The Faraday cage formed by the construction of these devices removes the concern of inadvertent ignition of the energetic material. However, the laser diode itself can be damaged by ESD pulses, therefore, to enhance reliability, some protection of the laser diode is necessary. The development of the MC4612 Optical Actuator has included a circuit to protect the laser diode from ESD pulses including the ''Fisher'' severe human body ESD model. The MC4612 uses a laser diode and is designed to replace existing hot-wire actuators. Optical energy from a laser diode, instead of electrical energy, is used to ignite the pyrotechnic. The protection circuit is described along with a discussion of how the circuit design addresses and circumvents the historic 1Amp/1Watt requirement that has been applicable to hot-wire devices.
Abstract not provided.
Proposed for publication in Surface and Interface Analysis.
Abstract not provided.
Proposed for publication in Journal of Materials Research.
Abstract not provided.
Proposed for publication in Journal of Microscopy.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Nuclear Science
Development in the field of destructive single-event effects over the last 40 years are reviewed. Single-event latchup, single-event burnout, single-event gate rupture, and single-event snap-back are discussed beginning with the first observation of each effect, its phenomenology, and the development of present day understanding of the mechanisms involved.
This report describes a workshop on self-healing infrastructures conducted jointly by Sandia National Laboratories, Infrastructure & Information Division, and the Massachusetts Institute of Technology, Engineering Systems Division. The workshop was held in summer, 2002 and funded under Laboratory-Directed Research and Development (LDRD) No.5 1540. The purpose of the workshop was to obtain a working definition of a self-healing infrastructure, explore concepts for self-healing infrastructures systems, and to propose engineering studies that would lay the foundation for the realization of such systems. The workshop produced a number of useful working documents that clarified the concept of self-healing applied to large-scale system-of-systems exemplified by the US National Critical Infrastructure. The workshop eventually resulted in a joint proposal to the National Science Foundation and a continuing collaboration on intelligent agent based approaches to coordination of infrastructure systems in a self-healing regime.
Abstract not provided.
Proposed for publication in Journal of Polymer Science B - Polymer Physics.
Abstract not provided.
Proposed for publication in Polymer.
Abstract not provided.
Glass can have lethal effects including fatalities and injuries when it breaks and then flies through the air under blast loading (''the glass problem''). One goal of this program was to assess the glass problem and solutions being pursued to mitigate it. One solution to the problem is the development of new glass technology that allows the strength and fragmentation to be controlled or selected depending on the blast performance specifications. For example the glass could be weak and fail, or it could be strong and survive, but it must perform reliably. Also, once it fails it should produce fragments of a controlled size. Under certain circumstances it may be beneficial to have very small fragments, in others it may be beneficial to have large fragments that stay together. The second goal of this program was to evaluate the performance (strength, reliability, and fragmentation) of Engineered Stress Profile (ESP) glass under different loading conditions. These included pseudo-static strength and pressure tests and free-field blast tests. The ultimate goal was to provide engineers and architects with a glass whose behavior under blast loading is less lethal. A near-term benefit is a new approach for improving the reliability of glass and modifying its fracture behavior.
Proposed for publication in Materials Characterization.
Abstract not provided.
Proposed for publication in Chemical Physical Letters.
Abstract not provided.
Proposed for publication in IEEE Transactions on Plasma Science.
Abstract not provided.
Proposed for publication in Polymer Degradation and Stability.
Abstract not provided.
A prototype design for a plutonium air transport package capable of carrying 7.6 kg of plutonium oxide and surviving a ''worst-case'' plane crash has been developed by Sandia National Laboratories (SNL) for the Japan Nuclear Cycle Development Institute (JNC). A series of impact tests were conducted on half-scale models of this design for side, end, and comer orientations at speeds close to 282 m/s onto a target designed to simulate weathered sandstone. These tests were designed to evaluate the performance of the overpack concept and impact-limiting materials in critical impact orientations. The impact tests of the Perforated Metal Air Transportable Package (PMATP) prototypes were performed at SNL's 10,000-ft rocket sled track. This report describes test facilities calibration and environmental testing methods of the PMATP under specific test conditions. The tests were conducted according to the test plan and procedures that were written by the authors and approved by SNL management and quality assurance personnel. The result of these tests was that the half-scale PMATP survived the ''worst-case'' airplane crash conditions, and indicated that a full-scale PMATP, utilizing this overpack concept and these impact-limiting materials, would also survive these crash conditions.
Proposed for publication in Journal of Dynamic Systems, Measurement, and Control.
Abstract not provided.
Abstract not provided.
Proposed for publicaton in Philosophical Magazine.
Abstract not provided.
Proposed for publication in Surface and Interface Analysis.
Abstract not provided.
Proposed for publication in IEEE Special Issue on Quantum Electronics.
Abstract not provided.
Proposed for publication in Applied Physics Letters.
Abstract not provided.
Proposed for publication in Optics (2002), and Optics & Photonics News (December 2002).
Abstract not provided.
Proposed for publication in Physica E.
Abstract not provided.
Proposed for publication in Applied Physics Letters.
Abstract not provided.
Proposed for publication in Science Magazine.
Abstract not provided.
Abstract not provided.
Proposed for publication in Applied Physics Letters.
High-quality-factor microcavities in two-dimensional photonic crystals at optical frequencies have a number of technological applications, such as cavity quantum electrodynamics, optical switching, filtering, and wavelength multiplexing. For such applications, it is useful to have a simple approach to tune the microcavity resonant wavelength. In this letter, we propose a microcavity design by which we can tune the resonant wavelength by changing the cavity geometry while still obtaining a high quality factor.
Proposed for publication in Langmuir.
We have investigated in situ and in real time vapor-phase self-assembly of 1-decene on Si, using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIRS). The adsorption of 1-decene on hydrogenated Si(100) results in a decane-terminated hydrophobic surface, indicated by the sessile-drop water contact angle at 107 {+-} 2. This maximum contact angle is achieved at 160 C under 30 mTorr of vapor-phase 1-decene. The fractional surface coverage of decane, calculated from the IR absorbance of C-H stretching vibrational modes near 2900 cm{sup -1}, follows a Langmuir isotherm. The absolute surface coverage calculated from the IR absorbance saturates at 3.2 x 10{sup 14} cm{sup -2}. On the basis of this isotherm, the empirical rate constant (k{prime}{sub 2}) that governs the rate-limiting step in 1-decene adsorption on HF-treated Si(100) is (3.3 {+-} 0.7) x 10{sup -2} min{sup -1}. The thickness and cant angle of the decane monolayer at the saturation coverage are calculated from angle resolved X-ray photoelectron spectroscopy (AR-XPS). The calculated thickness ranges from 8.4 to 18 {angstrom} due to the uncertainty in the attenuation lengths of C(1s) and Si(2p) photoelectrons through the decane layer. For the same uncertainty, the calculated cant angle ranges from 0 to 55{sup o}. Spectroscopic ellipsometry is independently used to approximate the film thickness at 16 {angstrom}. Monitoring the decane monolayer over a period of 50 days using AR-XPS indicates that the Si surface underneath the decane monolayer gets oxidized with time, leading to the degradation of the decane layer.
Proposed for publication in Applied Physics Letters.
We demonstrate that when vertical threading dislocations in (0001) GaN are imaged in plan-view by transmission electron microscopy, a surface-relaxation contrast operates in addition to that due to the strain fields of dislocations passing through the specimen. We show that all three dislocation types (edge, screw, and mixed) can be detected in the same image using g = (11{bar 2}0) and 18{sup o} specimen tilt from [0001], allowing total densities to be assessed properly. The type of an individual dislocation can also be readily identified.
Proposed for publication in Langmuir.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Wireless networking using the IEEE 802.11standards is a viable alternative for data communications in safeguards applications. This paper discusses the range of 802.11-based networking applications, along with their advantages and disadvantages. For maximum performance, safety, and security, Wireless networking should be implemented only after a comprehensive site survey has determined detailed requirements, hazards, and threats.
Abstract not provided.
The propagation of electromagnetic waves through dispersive media forms the basis for a wide variety of applications. Rapid advances in materials have produced new products with tailored responses across frequency bands. Many of these new materials, such as radar absorbing material and photonic crystals, are dispersive in nature. This, in turn, has opened up the possibility for the exploitation of these dispersive dielectric properties for a variety of applications. Thus, it is desirable to know the electromagnetic properties of both man-made and natural materials across a wide frequency range. With the advent of transient pulsers with sub-nanosecond risetimes and rates of voltage rise approaching 10**16 V/s, the frequencies of interest in the transient response extend to approximately the 2 GHz range. Although a network analyzer can provide either frequency- or time-domain data (by inverse transform), common TEM cells are only rated to 0.5 to 1.5 GHz--significantly below the maximum frequency of interest. To extend the frequency range to include 2 GHz, a TEM cell was characterized and a deembedding algorithm was applied to account, in part, for the limitations of the cell. The de-embedding technique is described along with such measurement issues such as clear time and sneak around. Measurements of complex permittivity of common drinking water are shown. This frequency extension will lead to more expansive testing of dielectric materials of interest.
Proposed for publication in Journal of Food Protection.
Abstract not provided.
Abstract not provided.
The Multispectral Thermal Imager Satellite (MTI) has been used to test a sub-pixel sampling technique in an effort to obtain higher spatial frequency imagery than that of its original design. The MTI instrument is of particular interest because of its infrared detectors. In this spectral region, the detector size is traditionally the limiting factor in determining the satellite's ground sampling distance (GSD). Additionally, many over-sampling techniques require flexible command and control of the sensor and spacecraft. The MTI sensor is well suited for this task, as it is the only imaging system on the MTI satellite bus. In this super-sampling technique, MTI is maneuvered such that the data are collected at sub-pixel intervals on the ground. The data are then processed using a deconvolution algorithm using in-scene measured point spread functions (PSF) to produce an image with synthetically-boosted GSD.
The Digital Elevation Model (DEM) extraction process traditionally uses a stereo pair of aerial photographs that are sequentially captured using an airborne metric camera. Standard DEM extraction techniques have been naturally extended to utilize satellite imagery. However, the particular characteristics of satellite imaging can cause difficulties in the DEM extraction process. The ephemeris of the spacecraft during the collects, with respect to the ground test site, is the most important factor in the elevation extraction process. When the angle of separation between the stereo images is small, the extraction process typically produces measurements with low accuracy. A large angle of separation can cause an excessive number of erroneous points in the output DEM. There is also a possibility of having occluded areas in the images when drastic topographic variation is present, making it impossible to calculate elevation in the blind spots. The use of three or more images registered to the same ground area can potentially reduce these problems and improve the accuracy of the extracted DEM. The pointing capability of the Multispectral Thermal Imager (MTI) allows for multiple collects of the same area to be taken from different perspectives. This functionality of MTI makes it a good candidate for the implementation of DEM extraction using multiple images for improved accuracy. This paper describes a project to evaluate this capability and the algorithms used to extract DEMs from multi-look MTI imagery.
Abstract not provided.
Coupled double quantum well field-effect transistors with a grating gate exhibit a terahertz ({approx}600 GHz) photoconductive response that resonates with standing two dimensional plasma oscillations under the gate and may be the basis for developing a fast, tunable terahertz detector. The application of a precisely aligned in-plane magnetic field produces no detectable change in the device DC conductance but produces a dramatic inversion, growth of the terahertz photoconductive response and frequency shift of the standing plasmon resonances. The frequency shift can be described by a significant mass increase produced by the in-plane field. The mass increase is substantially larger than that calculated from a single well and we presume that a proper treatment of the coupled double quantum well may resolve this discrepancy.
Proposed for publication in Journal of Physical Chemistry B.
Fe nanoparticles prepared by iron carbonyl decomposition using different methods are compared structurally, chemically, and magnetically. The specific magnetization of the particles was determined from the magnetic moment, the particle size observed by transmission electron microscopy, and the total iron concentration found from calibrated X-ray fluorescence. The volume fraction of oxide is reported for particles of different sizes and for particles made by slightly different techniques.
Proposed for publication in Physical Review B.
The conductivity of extremely high mobility dilute two-dimensional holes in GaAs changes linearly with temperature in the insulating side of the metal-insulator transition. Hopping conduction, characterized by an exponentially decreasing conductivity with decreasing temperature, is not observed when the conductivity is smaller than e{sup 2}/h. We suggest that strong interactions in a regime close to the Wigner crystallization must be playing a role in the unusual transport.
Proposed for publication in Journal of Physical Chemistry B.
Experiments using high-resolution size exclusion chromatography (HRSEC), dynamic light scattering, and transmission electron microscopy are conducted to investigate the effects of aging of Au nanoclusters in the presence of surfactant ligands. It is observed that contrary to the expectation that aging in solution will always broaden the size dispersion and increase the average size (Ostwald ripening), a narrowing of the size dispersion and change in average size can occur with time under ambient conditions.
Proposed for publication in the Journal De Physique IV.
Transport measurements of high-mobility two-dimensional electron systems at low temperatures have revealed a large resistance anisotropy around half-filling of excited Landau levels. These results have been attributed to electronic stripe-phase formation with spontaneously broken orientational symmetry. Mechanisms which are known to break the orientational symmetry include poorly-understood crystal structure effects and an in-plane magnetic field, B{sub {parallel}}. Here we report that a large B{sub {parallel}} also causes the transport anisotropy to persist up to much higher temperatures. In this regime, we find that the anisotropic resistance scales sublinearly with B{sub {parallel}}/T. These observations support the proposal that the transition from anisotropic to isotropic transport reflects a liquid crystal phase transition where local stripe order persists even in the isotropic regime.
Proposed for publication in Physical Review B.
The metallic conductivity of dilute two-dimensional holes in a GaAs HIGFET (Heterojunction Insulated-Gate Field-Effect Transistor) with extremely high mobility and large r{sub s} is found to have a linear dependence on temperature, consistent with the theory of interaction corrections in the ballistic regime. Phonon scattering contributions are negligible in the temperature range of our interest, allowing comparison between our measured data and theory without any phonon subtraction. The magnitude of the Fermi liquid interaction parameter F{sub 0}{sup {sigma}} determined from the experiment, however, decreases with increasing r{sub s} for r{sub s} {approx}> 22, a behavior unexpected from existing theoretical calculations valid for small r{sub s}.
The Multispectral Thermal Imager Satellite (MTI), launched on March 12, 2000, has now surpassed its one-year mission requirement and its three-year mission goal. Primary and secondary program objectives regarding the development and evaluation of space-based multispectral and thermal imaging technology for nonproliferation treaty monitoring and other national security and civilian application have been met. Valuable lessons have also been learned, both from things that worked especially well and from shortcomings and anomalies encountered. This paper addresses lessons associated with the satellite, ground station and system operations, while companion papers address lessons associated with radiometric calibration, band-to-band registration and scientific processes and results. Things addressed in this paper that went especially well include overall satellite design, ground station design, system operations, and integration and test. Anomalies and other problems addressed herein include gyro and mass storage unit failures, battery under-voltage trips, a blown fuse, unexpected effects induced by communication link noise, ground station problems, and anomalies resulting from human error. In spite of MTI's single-string design, the operations team has been successful in working around these problems, and the satellite continues to collect valuable mission data.
Abstract not provided.
Abstract not provided.
Cross-sections for the elastic recoil of hydrogen isotopes, including tritium, have been measured for {sup 4}He{sup 2+} ions in the energy range of 9.0-11.6 MeV. These cross-sections have been measured at a scattering angle of 30{sup o} in the laboratory frame. Cross-sections were measured by allowing a {sup 4}He{sup 2+} beam to fall incident on solid targets of ErH{sub 2}, ErD{sub 2} and ErT{sub 2}, each of 500 nm nominal thickness and known areal densities of H, D, T and Er. The uncertainty in each cross-section is estimated to be {+-}3.2%.
Hydrogen isotope thin film standards have been manufactured at Sandia National Laboratories for use by the materials characterization community. Several considerations were taken into account during the manufacture of the ErHD standards, with accuracy and stability being the most important. The standards were fabricated by e-beam deposition of Er onto a Mo substrate and the film stoichiometrically loaded with hydrogen and deuterium. To determine the loading accuracy of the standards two random samples were measured by thermal desorption mass spectrometry and atomic absorption spectrometry techniques with a stated combined accuracy of {approx}1.6% (1{sigma}). All the standards were then measured by high energy RBS/ERD and RBS/NRA with the accuracy of the techniques {approx}5% (1{sigma}). The standards were then distributed to the IBA materials characterization community for analysis. This paper will discuss the suitability of the standards for use by the IBA community and compare measurement results to highlight the accuracy of the techniques used.
Proposed for publication in Analytical Chemistry Journal.
Abstract not provided.
Proposed for publication in Inorganic Chemistry.
Previous studies of 5,10,15,20-tetraarylporphyrins have shown that the barrier for meso aryl-porphyrin rotation ({Delta}G{sub ROT}) varies as a function of the core substituent M and is lower for a small metal (M = Ni) compared to a large metal (M = Zn) and for a dication (M 4H{sup 2+}) versus a free base porphyrin (M = 2H). This has been attributed to changes in the nonplanar distortion of the porphyrin ring and the deformability of the macrocycle caused by the core substituent. In the present work, X-ray crystallography, molecular mechanics (MM) calculations, and variable temperature (VT) {sup 1}H NMR spectroscopy are used to examine the relationship between the aryl-porphyrin rotational barrier and the core substituent M in some novel 2,3,5,7,8,10,12,13,15,17,18,20-dodecaarylporphyrins (DArPs), and specifically in some 5,10,15,20-tetraaryl-2,3,7,8,12,13,17,18-octaphenylporphyrins (TArOPPs), where steric crowding of the peripheral groups always results in a very nonplanar macrocycle. X-ray structures of DArPs indicate differences in the nonplanar conformation of the macrocycle as a function of M, with saddle conformations being observed for M = Zn, 2H or M = 4H{sup 2+} and saddle and/or ruffle conformations for M = Ni. VT NMR studies show that the effect of protonation in the TArOPPs is to increase {Delta}G{sub ROT}, which is the opposite of the effect seen for the TArPs, and MM calculations also predict a strikingly high barrier for the TArOPPs when M = 4H{sup 2+}. These and other findings suggest that the aryl-porphyrin rotational barriers in the DArPs are closely linked to the deformability of the macrocycle along a nonplanar distortion mode which moves the substituent being rotated out of the porphyrin plane.
Proposed for publication in Physical Review A.
This paper explores quantum-coherence phenomena in a semiconductor quantum-dot structure. The calculations predict the occurrence of inversionless gain, electromagnetically induced transparency, and refractive-index enhancement in the transient regime for dephasing rates typical under room temperature and high excitation conditions. They also indicate deviations from atomic systems because of strong many-body effects. Specifically, Coulomb interaction involving states of the quantum dots and the continuum belonging to the surrounding quantum well leads to collision-induced population redistribution and many-body energy and field renormalizations that modify the magnitude, spectral shape, and time dependence of quantum-coherence effects.
Proposed for publication in Journal of Applied Physics.
Abstract not provided.
Proposed for publication in Experimental Mathematics.
In T1, periodic minimal surfaces in a medium with exclusions (voids) are constructed and in this paper we present two algorithms for computing these minimal surfaces. The two algorithms use evolution of level sets by mean curvature. The first algorithm solves the governing nonlinear PDE directly and enforces numerically an orthogonality condition that the surfaces satisfy when they meet the boundaries of the exclusions. The second algorithm involves h-adaptive finite element approximations of a linear convection-diffusion equation, which has been shown to linearize the governing nonlinear PDE for weighted mean curvature flow.
Proposed for publication in Physical Review Letters.
Abstract not provided.
Proposed for publication in Physical Review B.
We present a series of electronic structure calculations that demonstrate a mechanism for spontaneous ionization of hydrogen at the Si-SiO{sub 2} interface. Specifically, we show that an isolated neutral hydrogen atom will spontaneously give up its charge and bond to a threefold coordinated oxygen atom. We refer to this entity as a proton. We have calculated the potential surface and found it to be entirely attractive. In contrast, hydrogen molecules will not undergo an analogous reaction. We relate these calculations both to proton generation experiments and to hydrogen plasma experiments.
Proposed for publication in Journal of Materials Research.
The effect of the density and in-plane distribution of interfacial interactions on crack initiation in an epoxy-silicon joint was studied in nominally pure shear loading. Well-defined combinations of strong (specific) and weak (nonspecific) interactions were created using self-assembling monolayers. The in-plane distribution of strong and weak interactions was varied by employing two deposition methods: depositing mixtures of molecules with different terminal groups resulting in a nominally random distribution, and depositing methyl-terminated molecules in domains defined lithographically with the remaining area interacting through strong acid-base interactions. The two distributions lead to very different fracture behavior. For the case of the methyl-terminated domains (50 {micro}m on a side) fabricated lithographically, the joint shear strength varies almost linearly with the area fraction of strongly interacting sites. From this we infer that cracks nucleate on or near the interface over nearly the entire range of bonded area fraction and do so at nearly the same value of local stress (load/bonded area). We postulate that the imposed heterogeneity in interfacial interactions results in heterogeneous stress and strain fields within the epoxy in close proximity to the interface. Simply, the bonded areas carry load while the methyl terminated domains carry negligible load. Stress is amplified adjacent to the well-bonded regions (and reduced adjacent to the poorly bonded regions), and this leads to crack initiation by plastic deformation and chain scission within the epoxy near the interface. For the case of mixed monolayers, the dependence is entirely different. At low areal density of strongly interacting sites, the joint shear strength is below the detection limit of our transducer for a significant range of mixed monolayer composition. With increasing density of strongly interacting sites, a sharp increase in joint shear strength occurs at a methyl terminated area fraction of roughly 0.90. We postulate that this coincides with the onset of yielding in the epoxy. For methyl-terminated area fractions less than 0.85, the joint shear strength becomes independent of the interfacial interactions. This indicates that fracture no longer initiates on the interface but away from the interface by a competing mechanism, likely plastic deformation and chain scission within the bulk epoxy. The data demonstrate that the in-plane distribution of interaction sites alone can affect the location of crack nucleation and the far-field stress required.
Proposed for publication in the Journal of the American Chemical Society.
Abstract not provided.
Proposed for publication in the Journal of the American Chemical Society.
Abstract not provided.
Proposed for publication in FORCE (Indian Security Magazine) - solicited article published in Delhi, summer/fall, 2003.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Nano Letters.
We describe the synthesis of highly magnetic iron nanoparticles using a novel surfactant, a {beta}-diketone. We have produced 6 nm iron nanoparticles with an unusually high saturation magnetization of more than 80% the value of bulk iron. Additionally, we measured a particle susceptibility of 14 (MKS units), which is far above the value possible for micron-scale spherical particles. These properties will allow for formation of composites that can be highly structured by magnetic fields.
Proposed for publication in the Journal of Applied Physics.
Abstract not provided.
Proposed for publication in the Journal of Vacuum Science and Technology B.
The effects of H{sub 2}O vapor introduced during focused ion beam (FIB) milling of diamond(100) are examined. In particular, we determine the yield, surface morphology, and microstructural damage that results from FIB sputtering and H{sub 2}O-assisted FIB milling processes. Experiments involving 20 keV Ga{sup +} bombardment to doses {approx}10{sup 18} ions/cm{sup 2} are conducted at a number of fixed ion incidence angles, {theta}. For each {theta} selected, H{sub 2}O-assisted ion milling shows an increased material removal rate compared with FIB sputtering (no gas assist). The amount by which the yield is enhanced depends on the angle of incidence with the largest difference occurring at {theta} = 75{sup o}. Experiments that vary pixel dwell time from 3 {micro}s to 20 ms while maintaining a fixed H{sub 2}O gas pressure demonstrate the additional effect of beam scan rate on yield for gas-assisted processes. Different surface morphologies develop during ion bombardment depending on the angle of ion incidence and the presence/absence of H{sub 2}O. In general, a single mode of ripples having a wave vector aligned with the projection of the ion beam vector forms for {theta} as high as 70{sup o}. H{sub 2}O affects this morphology by lowering the ripple onset angle and decreasing the ripple wavelength. At high angles of incidence ({theta} > 70{sup o}) a step/terrace morphology is observed. H{sub 2}O-assisted milling at {theta} > 70{sup o} results in a smoother stepped surface compared with FIB sputtering. Transmission electron microscopy shows that the amorphized thickness is reduced by 20% when using H{sub 2}O-assisted FIB milling.
Abstract not provided.
Proposed for publication in Physical Review Letters.
We report studies of the magnetic response of dilute frozen solutions of nanocrystalline Co particles grown in inverse micelles. Crystalline nanoclusters which initially exhibit only a small fraction of the bulk saturation moment restructure in solution without any change in cluster size or blocking temperature over a period of {approx}30-60 days, finally yielding a moment/atom which exceeds that of bulk Co. The saturation magnetism maintains its enhanced value for temperatures up to the melting point of the solvent matrix, but is strongly dependent on surface active additives and molecular oxygen.
Proposed for publication in Journal of Crystal Growth.
Using in situ laser light scattering, we have observed gas-phase nanoparticles formed during AlN, GaN and InN OMVPE. The response of the scattering intensity to a wide range of conditions indicates that the AlN parasitic chemistry is considerably different from the corresponding GaN and InN chemistry. A simple CVD particle-growth mechanism is introduced that can qualitatively explain the observed particle size and yields a strong residence time dependence. We also used FTIR to directly examine the reactivity of the metalorganic precursors with NH{sub 3} in the 25-300 C range. For trimethylaluminum/NH{sub 3} mixtures a facile CH{sub 4} elimination reaction is observed, which also produces gas-phase aminodimethylalane, i.e. Al(CH{sub 3}){sub 2}NH{sub 2}. For trimethylgallium and trimethylindium the dominant reaction is reversible adduct formation. All of the results indicate that the AlN particle-nucleation mechanism is predominately of a concerted nature, while the GaN and InN particle-nucleation mechanisms involve homogeneous pyrolysis and radical chemistry.
Proposed for publication in Surface Science Letters.
Density functional theory is used to predict workfunctions, {psi}. For relaxed clean W(1 0 0), the local density approximation (LDA) agrees with experiment better than the newer generalized gradient approximation, probably due to the surface electron self-energy. The large Ba metallic radius indicates it covers W(1 0 0) at about 0.5 monolayer (ML). However, Ba{sup 2+}, O{sup 2-}, and metallic W all have similar radii. Thus 1 ML of BaO (one BaO unit for each two W atoms) produces minimum strain, indicating commensurate interfaces. BaO (1 ML) and Ba (1/2 ML) have the same {psi} to within 0.02 V, so at these coverages reduction or oxidation is not important. Due to greater chemical activity of ScO vs. highly ionic BaO, when mixing the latter with this suboxide of scandia, the overlayer always has BaO as the top layer and ScO as the second layer. The BaO/ScO bilayer has a rocksalt structure, suggesting high stability. In the series BaO/ScO/, BaO/YO/, and BaO/LaO/W(1 0 0), the latter has a remarkably low {psi} of 1.3 V (LDA), but 2 ML of rocksalt BaO also has {psi} at 1.3 V. We suggest BaO (1 ML) does not exist and that it is worthwhile to attempt the direct synthesis and study of BaO (2 ML) and BaO/LaO.
Proposed for publication in Journal of Chemical Physics.
Several methods for preparing well equilibrated melts of long chains polymers are studied. We show that the standard method in which one starts with an ensemble of chains with the correct end-to-end distance arranged randomly in the simulation cell and introduces the excluded volume rapidly, leads to deformation on short length scales. This deformation is strongest for long chains and relaxes only after the chains have moved their own size. Two methods are shown to overcome this local deformation of the chains. One method is to first pre-pack the Gaussian chains, which reduces the density fluctuations in the system, followed by a gradual introduction of the excluded volume. The second method is a double-bridging algorithm in which new bonds are formed across a pair of chains, creating two new chains each substantially different from the original. We demonstrate the effectiveness of these methods for a linear bead spring polymer model with both zero and nonzero bending stiffness, however the methods are applicable to more complex architectures such as branched and star polymer.
Proposed for publication in Journal of Applied Physics.
Mechanisms of H release from Mg-doped, p-type GaN were investigated in vacuum, in N{sub 2} and O{sub 2} gases, and in electron-cyclotron-resonance N{sub 2} plasmas. Replacing grown-in protium with deuterium (D) and employing sensitive nuclear-reaction analysis allowed the retained concentration to be followed quantitatively over two decades during isothermal heating, illuminating the kinetics of controlling processes. Oxidation attending the O{sub 2} exposures was monitored through nuclear-reaction analysis of {sup 18}O. N{sub 2} gas at atmospheric pressure increases the rate of D release appreciably relative to vacuum. The acceleration produced by O{sub 2} gas is much greater, but is diminished in later stages of the release by oxidation. The N{sub 2} plasma employed in these studies had no resolvable effect. We argue that surface desorption is rate controlling in the D release, and that it occurs by D-D recombination and the formation of N-D and O-D species. Our results are quantitatively consistent with a theoretical model wherein the bulk solution is in equilibrium with surface states from which desorption occurs by processes that are both first and second order in surface coverage.
Proposed for publication in Journal of Applied Physics.
Atomic configurations corresponding to local-energy minima for the neutral MgH complex in wurtzite GaN are identified using density-functional theory and the generalized-gradient approximation for exchange and correlation. MgH binding energies, H local-mode vibration frequencies, and configurational degeneracies for the six lowest-energy configurations are used, along with corresponding results for isolated H{sup +}, to compute equilibrium H state populations in Mg-doped GaN as a function of temperature. For a Mg concentration of 1 x 10{sup 19}/cm{sup 3} and a H/Mg concentration ratio of 0.99, MgH is found to be the majority H species at room temperature with isolated H{sup +} becoming the majority species at T {approx} 550 C. Among the MgH states, one is found to dominate at all temperatures. The dominant configuration consists of H at an antibonding site of a N neighbor of the substitutional Mg, with the Mg-N and N-H bonds nearly aligned and the N-H bond oriented at an angle of -109{sup o} with the c axis. The H stretch-mode frequency of the dominant state is consistent with the peak observed in Fourier-transform infrared reflection spectra from Mg-doped GaN samples.
Proposed for publication in Applied Optics.
We describe the design, construction, and operation of a hyperspectral microarray scanner for functional genomic research. The hyperspectral instrument operates with spatial resolutions ranging from 3 to 30 {micro}m and records the emission spectrum between 490 and 900 nm with a spectral resolution of 3 nm for each pixel of the microarray. This spectral information, when coupled with multivariate data analysis techniques, allows for identification and elimination of unwanted artifacts and greatly improves the accuracy of microarray experiments. Microarray results presented in this study clearly demonstrate the separation of fluorescent label emission from the spectrally overlapping emission due to the underlying glass substrate. We also demonstrate separation of the emission due to green fluorescent protein expressed by yeast cells from the spectrally overlapping autofluorescence of the yeast cells and the growth media.
Proposed for publication in Applied Spectroscopy.
A manuscript describing this work summarized below has been submitted to Applied Spectroscopy. Comparisons of prediction models from the new ACLS and PLS multivariate spectral analysis methods were conducted using simulated data with deviations from the idealized model. Simulated uncorrelated concentration errors, and uncorrelated and correlated spectral noise were included to evaluate the methods on situations representative of experimental data. The simulations were based on pure spectral components derived from real near-infrared spectra of multicomponent dilute aqueous solutions containing glucose, urea, ethanol, and NaCl in the concentration range from 0-500 mg/dL. The statistical significance of differences was evaluated using the Wilcoxon signed rank test. The prediction abilities with nonlinearities present were similar for both calibration methods although concentration noise, number of samples, and spectral noise distribution sometimes affected one method more than the other. In the case of ideal errors and in the presence of nonlinear spectral responses, the differences between the standard error of predictions of the two methods were sometimes statistically significant, but the differences were always small in magnitude. Importantly, SRACLS was found to be competitive with PLS when component concentrations were only known for a single component. Thus, SRACLS has a distinct advantage over standard CLS methods that require that all spectral components be included in the model. In contrast to simulations with ideal error, SRACLS often generated models with superior prediction performance relative to PLS when the simulations were more realistic and included either non-uniform errors and/or correlated errors. Since the generalized ACLS algorithm is compatible with the PACLS method that allows rapid updating of models during prediction, the powerful combination of PACLS with ACLS is very promising for rapidly maintaining and transferring models for system drift, spectrometer differences, and unmodeled components without the need for recalibration. The comparisons under different noise assumptions in the simulations obtained during this investigation emphasize the need to use realistic simulations when making comparisons between various multivariate calibration methods. Clearly, the conclusions of the relative performance of various methods were found to be dependent on how realistic the spectral errors were in the simulated data. Results demonstrating the simplicity and power of ACLS relative to PLS are presented in the following section.
Proposed for publication in Biophysical Journal.
The adsorption of myoglobin to Langmuir monolayers of a metal-chelating lipid in crystalline phase was studied using neutron and X-ray reflectivity (NR and XR) and grazing incidence X-ray diffraction (GIXD). In this system, adsorption is due to the interaction between chelated divalent copper or nickel ions and the histidine moieties at the outer surface of the protein. The binding interaction of histidine with the Ni-IDA complex is known to be much weaker than that with Cu-IDA. Adsorption was examined under conditions of constant surface area with an initial pressure of 40 mN/m. After {approx}12 h little further change in reflectivity was detected, although the surface pressure continued to slowly increase. For chelated Cu{sup 2+} ions, the adsorbed layer structure in the final state was examined for bulk myoglobin concentrations of 0.10 and 10 {micro}M. For the case of 10 {micro}M, the final layer thickness was {approx}43 {angstrom}. This corresponds well to the two thicker dimensions of myoglobin in the native state (44 {angstrom} x 44 {angstrom} x 25 {angstrom}) and so is consistent with an end-on orientation for this disk-shaped protein at high packing density. However, the final average volume fraction of amino acid segments in the layer was 0.55, which is substantially greater than the value of 0.44 calculated for a completed monolayer from the crystal structure. This suggests an alternative interpretation based on denaturation. GIXD was used to follow the effect of protein binding on the crystalline packing of the lipids and to check for crystallinity within the layer of adsorbed myoglobin. Despite the strong adsorption of myoglobin, very little change was observed in the structure of the DSIDA film. There was no direct evidence in the XR or GIXD for peptide insertion into the lipid tail region. Also, no evidence for in-plane crystallinity within the adsorbed layer of myoglobin was observed. For 0.1 {micro}M bulk myoglobin concentration, the average segment volume fraction was only 0.13 and the layer thickness was {le} 25 {angstrom}. Adsorption of myoglobin to DSIDA-loaded with Ni{sup 2+} was examined at bulk concentrations of 10 and 50 {micro}M. At 10 {micro}M myoglobin, the adsorbed amount was comparable to that obtained for adsorption to Cu{sup 2+}-loaded DSIDA monolayers at 0.1 {micro}M. But interestingly, the adsorbed layer thickness was 38 {angstrom}, substantially greater than that obtained at low coverage with Cu-IDA. This indicates that either there are different preferred orientations for isolated myoglobin molecules adsorbed to Cu-IDA and Ni-IDA monolayer films or else myoglobin denatures to a different extent in the two cases. Either interpretation can be explained by the very different binding energies for individual interactions in the two cases. At 50 {micro}M myoglobin, the thickness and segement volume fraction in the adsorbed layer for Ni-IDA were comparable to the values obtained with Cu-IDA at 10 {micro}M myoglobin.
Proposed for publication in AIAA Journal of Guidance, Control and Dynamics.
The development of lightweight flexible structures that include both advanced control and active material will impact several space application areas. One way to reduce vibration is the combination of advanced control methods such as nonlinear adaptive control plus active structure technology. Active structures with both sensors and actuators, strategically placed along the structure, can suppress vibrations and enhance slewing performance. Active vibration suppression is accomplished with a graphite/epoxy composite structure that includes embedded strain sensors and actuators.
Proposed for publication in Physical Review B.
We demonstrate through experiment and simulation that when mono-domain Fe nanoparticles are formed into chains by the application of a magnetic field, the susceptibility of the resulting structure is greatly enhanced (11.4-fold) parallel to the particle chains and is much larger than transverse to the chains. Simulations show that this significant enhancement is expected when the susceptibility of the individual particles approaches 5 in MKS units, and is due to the spontaneous magnetization of individual particle chains, which occurs because of the strong dipolar interactions. This large enhancement is only possible with nanoparticles, because demagnetization fields limit the susceptibility of a spherical multi-domain particle to 3 (MKS). Experimental confirmation of the large susceptibility enhancement is presented, and both the enhancement and the susceptibility anisotropy are found to agree with simulation. The specific susceptibility of the nanocomposite is 54 (MKS), which exceeds the highest value we have obtained for field-structured composites of multi-domain particles by a factor of four.
Sandia National Labs has developed an autonomous, hand-held system for sensitive/selective detection of gas-phase chemicals. Through the sequential connection of microfabricated preconcentrators (PC), gas chromatography columns (GC) and a surface acoustic wave (SAW) detector arrays, the MicroChemLab{trademark} system is capable of selective and sensitive chemical detection in real-world environments. To date, interconnection of these key components has primarily been achieved in a hybrid fashion on a circuit board modified to include fluidic connections. The monolithic integration of the PC and GC with a silicon-based acoustic detector is the subject of this work.
Proposed for publication in NJIT Magazine.
Abstract not provided.
Abstract not provided.
Proposed next-step devices for development of fusion energy present a major increase in the energy content and duration of plasmas far beyond those encountered in existing machines. This increases the importance of controlling interactions between the fusion plasma and first-wall materials. These interactions change the wall materials and strongly affect the core plasma conditions. Two critical processes are the erosion of materials by the plasma, and the redeposition of eroded material along with hydrogen isotopes from the plasma. These impact reactor design through the lifetime of plasma-facing components and the inventory of tritium retained inside the vessel. Ion beam analysis has been widely used to investigate these complex plasma-material interactions in most of the large fusion plasma experiments. The design and choice of plasma-facing materials for next-step machines rely on knowledge obtained from these studies. This paper reviews the use of ion beam analysis for fusion energy research, and shows how these studies have helped to guide the design and selection of materials for a next-step machine.
Proposed for publication in the Journal of Physical Chemistry B.
We have developed force fields for the calculation of adsorption of NH{sub 3}, CO{sub 2}, and H{sub 2}O on zeolite 4A by performing Gibbs ensemble Monte Carlo simulations to fit experimental isotherms at 298 K. The calculated NH{sub 3} and CO{sub 2} isotherms are in excellent agreement with experimental data over a wide range of temperatures and several orders of magnitude in pressure. We have calculated isotherms for H{sub 2}O in 4A using two different models and have found that H{sub 2}O saturates zeolite 4A even at pressures as low as 0.01 kPa for the range of temperatures studied. We have studied the geometry of the adsorption sites and their dependence on loading. At low pressures, CO{sub 2} molecules adsorb with their longitudinal axis pointing toward the center of the supercage, whereas at higher pressures, the two oxygen atoms are equidistant from the Na atom in the binding site.
Abstract not provided.
Proposed for publication in Sensors and Actuators B.
Many data analysis algorithms that are currently employed in SAW sensors lack the ability to easily maintain calibration models in the presence of unmodeled interferents or sensor drift. The classical least squares/partial least squares (CLS/PLS) hybrid algorithm is tested in this study for its ability to update calibration models for unmodeled interferents and sensor drift with information from only a single recalibration standard. Use of the CLS/PLS hybrid algorithm for calibration and calibration maintenance of surface acoustic wave (SAW) devices was investigated for synthetic mixtures of iso-octane-methanol-water and with synthetic mixtures of nerve agent analogs, di-iso-propyl methyl phosphonate (DIMP)-kerosene-water along with a true ternary mixture of dimethyl methyl phosphonate (DMMP)-kerosene-water. Calibration statistics using the hybrid algorithm were found to be as good as those obtained from a standard partial least squares (PLS) analysis. In prediction, the hybrid algorithm models were found to perform equivalently to PLS models in the absence of unmodeled interferents or sensor drift, with an accuracy of 5-10% of the reference values and a high degree of precision. In the case of prediction in the presence of unmodeled interferents and/or sensor drift, PLS models and prediction augmented CLS/PLS (PACLS/PLS) hybrid models were compared using a single standard sample to update each model for prediction. For the cases studied, PACLS/PLS hybrid models were comparable to or outperformed updated PLS models that used subset recalibration or piece-wise direct standardization.
Proposed for publication in the Journal of Applied Physics.
n-type GaSb has been prepared by metal-organic chemical vapour deposition with tellurium donors using diethyltelluride as the dopant precursor. The maximum carrier concentration achieved was 1.7 x 10{sup 18} cm{sup -3}, as measured by van der Pauw-Hall effect measurements, for an atomic tellurium concentration of 1.8 x 10{sup 19} cm{sup -3}. The apparent low activation of tellurium donors is explained by a model that considers the effect of electrons occupying both the {Lambda} and L bands in GaSb due to the small energy difference between the {Lambda} and L conduction band minima. The model also accounts for the apparent increase in the carrier concentration determined by van der Pauw-Hall effect measurements at cryogenic temperatures.
Proposed for publication in Reliability Engineering and System Safety.
Several simple test problems are used to explore the following approaches to the representation of the uncertainty in model predictions that derives from uncertainty in model inputs: probability theory, evidence theory, possibility theory, and interval analysis. Each of the test problems has rather diffuse characterizations of the uncertainty in model inputs obtained from one or more equally credible sources. These given uncertainty characterizations are translated into the mathematical structure associated with each of the indicated approaches to the representation of uncertainty and then propagated through the model with Monte Carlo techniques to obtain the corresponding representation of the uncertainty in one or more model predictions. The different approaches to the representation of uncertainty can lead to very different appearing representations of the uncertainty in model predictions even though the starting information is exactly the same for each approach. To avoid misunderstandings and, potentially, bad decisions, these representations must be interpreted in the context of the theory/procedure from which they derive.
Proposed for publication in the Journal of Ship Production.
AUTOmated GENeration of Control Programs for Robotic Welding of Ship Structure (AUTOGEN) is software that automates the planning and compiling of control programs for robotic welding of ship structure. The software works by evaluating computer representations of the ship design and the manufacturing plan. Based on this evaluation, AUTOGEN internally identifies and appropriately characterizes each weld. Then it constructs the robot motions necessary to accomplish the welds and determines for each the correct assignment of process control values. AUTOGEN generates these robot control programs completely without manual intervention or edits except to correct wrong or missing input data. Most ship structure assemblies are unique or at best manufactured only a few times. Accordingly, the high cost inherent in all previous methods of preparing complex control programs has made robot welding of ship structures economically unattractive to the U.S. shipbuilding industry. AUTOGEN eliminates the cost of creating robot control programs. With programming costs eliminated, capitalization of robots to weld ship structures becomes economically viable. Robot welding of ship structures will result in reduced ship costs, uniform product quality, and enhanced worker safety. Sandia National Laboratories and Northrop Grumman Ship Systems worked with the National Shipbuilding Research Program to develop a means of automated path and process generation for robotic welding. This effort resulted in the AUTOGEN program, which has successfully demonstrated automated path generation and robot control. Although the current implementation of AUTOGEN is optimized for welding applications, the path and process planning capability has applicability to a number of industrial applications, including painting, riveting, and adhesive delivery.
Proposed for publication as an invited book review for AIAA Journal.
Abstract not provided.
Electrodeposition is a key process in LIGA (Lithographie, Galvanoformung, Abformung - German words for lithography, electroplating and molding) - microfabrication, which is increasingly demonstrated to be a viable technology for fabricating micro-devices or parts. LIGA Electrodeposition involves complex multi-physics phenomena: (1) diffusion, migration, and convection of charged species in a centimeter-scale electrolyte-bath region and in micron-scale featurecavity or trench regions; (2) homogeneous and heterogeneous electrochemical reactions; and (3) moving deposition surface or surfaces on which metal ions (e.g., {approx} i) are electrochemically reduced to form a pure metal or an alloy.
Proposed for publication in SIAM Journal on Scientific Computing (SJSC).
Abstract not provided.
Proposed for publication in Combustion and Flame.
Detonation cell widths, which provide a measure of detonability of a mixture, were measured for hydrocarbon-air and hydrogen-air-diluent mixtures. Results were obtained from a 0.43-m-diameter, 13.1-m-long heated detonation tube with an initial pressure of 101 kPa and an initial temperature between 25 and 100 C. The cell widths of simple cyclic hydrocarbons are somewhat smaller than those of comparable straight-chain alkanes. Cyclic hydrocarbons tested generally had similar cell sizes despite differences in degree of bond saturation, bond strain energy, oxygen substitution, and chemical structure. There was a significant reduction in the cell width of octane, a straight-chain alkane, when it was mixed with small quantities of hexyl nitrate. The effect of a diluent, such as steam and carbon dioxide, on the cell width of a hydrogen-air mixture is shown over a wide range of mixture stoichiometries. The data illustrate the effects of initial temperature and pressure on the cell width when compared to previous studies. Not only is carbon dioxide more effective than steam at increasing the mixture cell width, but also its effectiveness increases relative to that of steam with increasing concentrations. The detonability limits, which are dependent on the facility geometry and type of initiator used in this study, were measured for fuel-lean and fuel-rich hydrogen-air mixtures and stoichiometric hydrogen-air mixtures diluted with steam. The detonability limits are nominally at the flammability limits for hydrogen-air mixtures. The subcellular structure within a fuel-lean hydrogen-air detonation cell was recorded using a sooted foil. The uniform fine structure of the self-sustained transverse wave and the irregular structure of the overdriven lead shock wave are shown at the triple point path that marks the boundary between detonation cells.
Proposed for publication in Environmental and Ecological Statistics.
Efficient and reliable unexploded ordnance (UXO) site characterization is needed for decisions regarding future land use. There are several types of data available at UXO sites and geophysical signal maps are one of the most valuable sources of information. Incorporation of such information into site characterization requires a flexible and reliable methodology. Geostatistics allows one to account for exhaustive secondary information (i.e.,, known at every location within the field) in many different ways. Kriging and logistic regression were combined to map the probability of occurrence of at least one geophysical anomaly of interest, such as UXO, from a limited number of indicator data. Logistic regression is used to derive the trend from a geophysical signal map, and kriged residuals are added to the trend to estimate the probabilities of the presence of UXO at unsampled locations (simple kriging with varying local means or SKlm). Each location is identified for further remedial action if the estimated probability is greater than a given threshold. The technique is illustrated using a hypothetical UXO site generated by a UXO simulator, and a corresponding geophysical signal map. Indicator data are collected along two transects located within the site. Classification performances are then assessed by computing proportions of correct classification, false positive, false negative, and Kappa statistics. Two common approaches, one of which does not take any secondary information into account (ordinary indicator kriging) and a variant of common cokriging (collocated cokriging), were used for comparison purposes. Results indicate that accounting for exhaustive secondary information improves the overall characterization of UXO sites if an appropriate methodology, SKlm in this case, is used.
Proposed for publication in Journal of Materials Engineering and Performance.
The load relaxation behavior of small Elgiloy helical extension springs has been evaluated by a combined experimental and modeling approach. Isothermal, continuous heating, and interrupted heating relaxation tests of a specific spring design were conducted. Spring constants also were measured and compared with predictions using common spring formulas. For the constant heating rate relaxation tests, it was found that the springs retained their strength to higher temperatures at higher heating rates. A model, which describes the relaxation behavior, was developed and calibrated with the isothermal load relaxation tests. The model incorporates both time-independent deformation mechanisms, such as thermal expansion and shear modulus changes, as well as time-dependent mechanisms such as primary and steady state creep. The model was shown to accurately predict the load relaxation behavior for the continuous heating tests, as well as for a complex stepwise heating thermal cycle. The model can be used to determine the relaxation behavior for any arbitrary thermal cycle. An extension of the model to other spring designs is discussed.
This paper presents an analysis of utilizing unused cycles on supercomputers through the use of many small jobs. What we call 'interstitial computing,' is important to supercomputer centers for both productivity and political reasons. Interstitial computing makes use of the fact that small jobs are more or less fungible consumers of compute cycles that are more efficient for bin packing than the typical jobs on a supercomputer. An important feature of interstitial computing is that it not have a significant impact on the makespan of native jobs on the machine. Also, a facility can obtain higher utilizations that may only be otherwise possible with more complicated schemes or with very long wait times. The key contribution of this paper is that it provides theoretical and empirical guidelines for users and administrators for how currently unused supercomputer cycles may be exploited. We find that that interstitial computing is a more effective means for increasing machine utilization than increasing native job run times or size.
Proposed for publication in Mathematical Programming.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
Microelectromechanical systems (MEMS) with high out-of-plane stiffness are less susceptible to adhesion than more compliant structures, but reliable operation of sliding contacts still requires surfaces that exhibit adequate friction and wear performance after long periods of storage. Alkylsilane monolayers are popular surface treatments for silicon devices, and there has been some research to understand the performance of monolayers as a function of environment. However, there have been limited investigations of the tribological behavior of these surface treatments after exposure to harsh environments. There is a need to quantitatively determine the effects of storage environments on the performance of MEMS interfaces, rather than verifying device functionality alone. To this end, surface micromachined (SMM) structures that contain isolated tribological contacts have been used to investigate interface performance of alkylsilane monolayers after storage in inert environments, and after exposure to a variety of thermal and radiation environments. Results show that both octadecyltrichlorosilane (ODTS) and perfluorodecyltrichlorosilane (PFTS) exhibit little change in hydrophobicity or friction after Co-60 radiation exposures at a total dose of up to 500 krad. However, exposure to temperature cycles consistent with packaging technologies, in the presence of low levels of water vapor, produces degradation of hydrophobicity and increase in static friction for ODTS films while producing no significant degradation in PFTS films.
Proceedings of SPIE - The International Society for Optical Engineering
Sandia National Laboratories has programs covering a broad range of MEMS technologies from LIGA to bulk to surface micromachining. These MEMS technologies are being considered for an equally broad range of applications, including sensors, actuators, optics, and microfluidics. As these technologies have moved from the research to the prototype product stage, packaging has been required to develop new capabilities to integrated MEMS and other technologies into functional microsystems. This paper discusses several of Sandia's MEMS packaging efforts, focusing mainly on inserting Sandia's SUMMiT™ V (5-level polysilicon) surface micromachining technology into fieldable microsystems.
This document provides a user manual for the SGOPT software library. SGOPT is a C++ class library for nonlinear optimization. This library uses an object-oriented design that allows the software to be extended to a new problem domains. Furthermore, this library was designed to that the interface is straightforward while providing flexibility to allow new algorithms to be easily added to this library. The SGOPT library has been used by several software projects at Sandia, and it is integrated into the DAKOTA design and analysis toolkit. This report provides a high-level description of the optimization algorithms provided by SGOPT and describes the C++ class hierarchy in which they are implemented. Finally, installation instructions are included.
Abstract not provided.
Geology
Nanopores are ubiquitous in porous geologic media and may account for >90% of total mineral surface areas. Surface chemistry, ion sorption, and the related geochemical reactions within nanopores can be significantly modified by a nanometer-scale space confinement. As the pore size is reduced to a few nanometers, the difference between surface acidity constants (ΔpK = pK2 - pK1) decreases, giving rise to a higher surface charge density on a nanopore surface than that on an unconfined mineral-water interface. The change in surface acidity constants results in a shift of ion sorption edges and enhances ion sorption on nanopore surfaces. Also, the water activity in a nanopore is greatly reduced, thus increasing the tendency for inner sphere complexation and mineral precipitation. All these effects combine to preferentially enrich trace elements in nanopores, as observed in both field and laboratory studies. The work reported here sheds new light on such fundamental geochemical issues as the irreversibility of ion sorption and desorption, the bioavailability of subsurface contaminants, and the enrichment of trace metals in ore deposits, as well as the kinetics of mineral dissolution and/or precipitation.
This report summarizes recent reviews, observations, and analyses believed to be imperative to our understanding of the recent two million cubic feet salt fall event in Big Hill Cavern 103, one of the caverns of the Strategic Petroleum Reserve (SPR). The fall was the result of one or more stress driven mechanical instabilities, the origins of which are discussed in the report. The work has lead to important conclusions concerning the engineering and operations of the caverns at Big Hill. Specifically, Big Hill, being the youngest SPR site, was subjected to state-of-the-art solutioning methods to develop nominally well-formed, right-circular cylindrical caverns. Examination of the pressure history records indicate that operationally all Big Hill SPR caverns have been treated similarly. Significantly, new three-dimensional (3-D) imaging methods, applied to old (original) and more recent sonar survey data, have provided much more detailed views of cavern walls, roofs, and floors. This has made possible documentation of the presence of localized deviations from ''smooth'' cylindrical cavern walls. These deviations are now recognized as isolated, linear and/or planar features in the original sonar data (circa early 1990s), which persist to the present time. These elements represent either sites of preferential leaching, localized spalling, or a combination of the two. Understanding the precise origin of these phenomena remains a challenge, especially considering, in a historical sense, the domal salt at Big Hill was believed to be well-characterized. However, significant inhomogeneities in the domal salt that may imply abnormalities in leaching were not noted. Indeed, any inhomogeneities were judged inconsequential to the solution-engineering methods at the time, and, by the same token, to the approaches to modeling the rock mass geomechanical response. The rock mass was treated as isotropic and homogeneous, which in retrospect, appears to have been an over simplification. This analysis shows there are possible new opportunities regarding completing an appropriate site characterization for existing operating cavern fields in the SPR, as well as expansion of current sites or development of new sites. Such characterization should first be consistent with needs identified by this report. Secondly, the characterization needs to satisfy the input requirements of the 3-D solutioning calculational methods being developed, together with 3-D geomechanical analyses techniques which address deformation of a salt rock mass that contains inhomogeneities. It seems apparent that focusing on these important areas could preclude occurrence of unexpected events that would adversely impact the operations of SPR.
The objective of this program was to investigate manufacturing improvements for wind turbine blades. The program included a series of test activities to evaluate the strength, deflection, performance, and loading characteristics of the prototype blades. The original contract was extended in order to continue development of several key blade technologies identified in the project. The objective of the remote build task was to demonstrate the concept of manufacturing wind turbine blades at a temporary manufacturing facility in a rural environment. TPI Composites successfully completed a remote manufacturing demonstration in which four blades were fabricated. The remote demonstration used a manufacturing approach which relied upon material ''kits'' that were organized in the factory and shipped to the site. Manufacturing blades at the wind plant site presents serious logistics difficulties and does not appear to be the best approach. A better method appears to be regional manufacturing facilities, which will eliminate most of the transportation cost, without incurring the logistical problems associated with fabrication directly onsite. With this approach the remote facilities would use commonly available industrial infrastructure such as enclosed workbays, overhead cranes, and paved staging areas. Additional fatigue testing of the M20 root stud design was completed with good results. This design provides adhesive bond strength under fatigue loading that exceeds that of the fastener. A new thru-stud bonding concept was developed for the M30 stud design. This approach offers several manufacturing advantages; however, the test results were inconclusive.
The economies of East Asia are predominantly export based and, therefore, place special emphasis on the security of the sea lines of communication (SLOCs). Due to economic globalization, the United States shares these concerns. Cooperative measures by the concerned parties could reduce the potential for disruption by maritime conflicts. Primary threats against the SLOCs are disputes over the resources under the seas, disputes over some small island groups, disputes between particular parties (China-Taiwan and North-South Korea), or illegal activities like smuggling, piracy, or terrorism. This paper provides an overview on these threats, issue by issue, to identify common elements and needed cooperation. Cooperation on other topics such as search and rescue, fisheries protection, and oil spill response may help support improved relations to prevent maritime conflicts. Many technologies can help support maritime cooperation, including improved communications links, tracking and emergency beacon devices, and satellite imaging. Appropriate technical and political means are suggested for each threat to the SLOCs.
A laser safety auditing and inventory system has been in use at Sandia National Laboratories--Albuquerque for the past five years and has recently been considered for adoption by Sandia National Laboratories--Livermore. The system utilizes the ''Microsoft Access'' database application, part of the Office 2000 software package. Audit and inventory data is available on-line for ready access by laser users. Data is updated weekly to provide users with current information relating to laser facility audits and laser inventories.
A careful analysis of rf and microwave scalar reflectometers is conducted to (1) reveal the advantages of 4-port over 3-port reflectometers, (2) show the advantage--and remaining weaknesses--of a reflectometer initialized by the open/short method and (3) present expressions for the worst-case errors in scalar reflectometer measurements.
The cost study for large wind turbine blades reviewed three blades of 30 meters, 50 meters, and 70 meters in length. Blade extreme wind design loads were estimated in accordance with IEC Class I recommendations. Structural analyses of three blade sizes were performed at representative spanwise stations assuming a stressed shell design approach and E-glass/vinylester laminate. A bill of materials was prepared for each of the three blade sizes using the laminate requirements prepared during the structural analysis effort. The labor requirements were prepared for twelve major manufacturing tasks. TPI Composites developed a conceptual design of the manufacturing facility for each of the three blade sizes, which was used for determining the cost of labor and overhead (capital equipment and facilities). Each of the three potential manufacturing facilities was sized to provide a constant annual rated power production (MW per year) of the blades it produced. The cost of the production tooling and overland transportation was also estimated. The results indicate that as blades get larger, materials become a greater proportion of total cost, while the percentage of labor cost is decreased. Transportation costs decreased as a percentage of total cost. The study also suggests that blade cost reduction efforts should focus on reducing material cost and lowering manufacturing labor, because cost reductions in those areas will have the strongest impact on overall blade cost.
An effort is underway at Sandia National Laboratories to develop a library of algorithms to search for potential interactions between surfaces represented by analytic and discretized topological entities. This effort is also developing algorithms to determine forces due to these interactions for transient dynamics applications. This document describes the Application Programming Interface (API) for the ACME (Algorithms for Contact in a Multiphysics Environment) library.
Abstract not provided.
This report summarizes the purchasing and transportation activities of the Procurement and Logistics Management Center for Fiscal Year 2002. Activities for both the New Mexico and California locations are included.
The autonomic healing ability of an epoxy adhesive containing micro-encapsulated dicyclopentadiene (DCPD) was evaluated. The epoxy resin used was Epon 828 cured with either Versamid 140 or diethylenetriamine (DETA). Variables included total weight percent of microcapsules (MCs) and catalyst, as well as the catalyst to DCPD ratio. The degree of healing was determined by the fracture toughness before and after ''healing'' using double-cantilever beam analysis. It was found that the degree of self-healing was most directly related to the contact area (i.e. crack width) during healing. Temperature also played a significant role. Observed differences between the results of this study and those in literature are discussed.
A test method, the Tensile Brazil Nut Sandwich (TBNS) specimen, was developed to measure mixed-mode interfacial toughness of bonded materials. Interfacial toughness measured by this technique is compared to the interfacial toughness of thin film adhesive coatings using a nanoindentation technique. The interfacial toughness of solvent-cast and melt-spun adhesive thin films is compared and found to be similar. Finally, the Johnson-Kendall-Roberts (JKR) technique is used to evaluate the cleanliness of aluminum substrates.
Since initiating research on integration of distributed energy resources (DER) in 1999, the Consortium for Electric Reliability Technology Solutions (CERTS) has been actively assessing and reviewing existing DER test facilities for possible demonstrations of advanced DER system integration concepts. This report is a compendium of information collected by the CERTS team on DER test facilities during this period.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Wind Energy.
Abstract not provided.
Proposed for publication in Mitigation and Adaptation Strategies for Global Change.
Abstract not provided.
Proposed for publication in the Review of Scientific Instruments.
Abstract not provided.
Proposed for publication in IEEE Transactions on Electron Devices.
Abstract not provided.
Abstract not provided.
The ability for scientific simulation software to detect and recover from errors and failures of supporting hardware and software layers is becoming more important due to the pressure to shift from large, specialized multi-million dollar ASCI computing platforms to smaller, less expensive interconnected machines consisting of off-the-shelf hardware. As evidenced by the CPlant{trademark} experiences, fault tolerance can be necessary even on such a homogeneous system and may also prove useful in the next generation of ASCI platforms. This report describes a research effort intended to study, implement, and test the feasibility of various fault tolerance mechanisms controlled at the simulation code level. Errors and failures would be detected by underlying software layers, communicated to the application through a convenient interface, and then handled by the simulation code itself. Targeted faults included corrupt communication messages, processor node dropouts, and unacceptable slowdown of service from processing nodes. Recovery techniques such as re-sending communication messages and dynamic reallocation of failing processor nodes were considered. However, most fault tolerance mechanisms rely on underlying software layers which were discovered to be lacking to such a degree that mechanisms at the application level could not be implemented. This research effort has been postponed and shifted to these supporting layers.
Abstract not provided.
A continuously operating prototype chemical weapons sensor system based on the {mu}ChemLab{trademark} technology was installed in the San Francisco International Airport in late June 2002. This prototype was assembled in a National Electric Manufacturers Association (NEMA) enclosure and controlled by a personal computer collocated with it. Data from the prototype was downloaded regularly and periodic calibration tests were performed through modem-operated control. The instrument was installed just downstream of the return air fans in the return air plenum of a high-use area of a boarding area. A CW Sentry, manufactured by Microsensor Systems, was installed alongside the {mu}ChemLab unit and results from its operation are reported elsewhere. Tests began on June 26, 2002 and concluded on October 16, 2002. This report will discuss the performance of the prototype during the continuous testing period. Over 70,000 test cycles were performed during this period. Data from this first field emplacement have indicated several areas where engineering improvements can be made for future field emplacement.
Abstract not provided.
Proposed for publication in Journal of Applied Physics.
Abstract not provided.
Proposed for publication in Langmuir.
Abstract not provided.
Proposed for publication in Journal of Applied Physics.
Abstract not provided.
Proposed for publication in Real Property.
Abstract not provided.
Proposed for publication in Molecular Simulation.
Abstract not provided.
Proposed for publication in Physica C.
Abstract not provided.
When several kA pulses are passed through single, fine 25 {micro}m diameter wires, the wire material heats, melts, vaporizes and expands. Initially the voltage across--and current through--a wire increases until an abrupt voltage collapse occurs. After this collapse the voltage remains at a relative small value while the current continues to increase. In order to understand how this early time behavior may affect the subsequent implosion, small-scale experiments at Cornell University's Laboratory of Plasma Studies concentrated on diagnosing expanding single wire dynamics. X-ray backlighting, interferometry and Schlieren imaging as well as current and voltage measurements have been employed. The voltage collapse has been attributed to the formation of plasma around the wire and a transfer of current to this highly conducting coronal plasma. Interferometry has confirmed the plasma formation, but the current transfer has only been postulated. Subsequent experiments on the Z-Facility at Sandia National Laboratories have produced impressive x-ray yields etc.
Proposed for publication in Environmental Modelling and Software Journal.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Physical Review Letters.
Abstract not provided.
The research discussed in this report was conceived during our earlier attempts to simulate breakdown across a dielectric surface using a Monte Carlo approach. While cataloguing the various ways that a dielectric surface could affect the breakdown process, we found that one obvious effect--photoemission from the surface--had been ignored. Initially, we felt that inclusion of this effect could have a major impact on how an ionization front propagates across a surface because of the following argument chain: (1) The photon energy required to release electrons from a surface via photoemission is less than the photon energy required to ionize gas molecules directly. (2) The mean free path of a photon in gas is longer for low-energy photons than for high-energy photons. (3) Photoionization is a major effect in advancing the ionization front for breakdown in gas without a surface, therefore, we know that even high-energy photons can be released from the head of a streamer and propagate some distance through the gas. Our hypothesis, therefore, was that photons with energies near the threshold of photoemission could travel further in front of the streamer before being absorbed than higher-energy photons needed for photoionization, yet the lower-energy photons, with the help of the surface, could still create seed electrons for new avalanches. Thus, the streamer would advance more rapidly next to a surface than in gas alone. Additionally, the photoemission from the surface would add to the electrons in the avalanche and cause the avalanche to grow faster. After some study, however, we are forced to conclude that although photoemission does contribute to avalanche growth at fields near breakdown threshold, secondary electron emission causes electrons to stick to the surface and cancels out the growth due to photoemission. This conclusion assumes a discharge that occurs over a short period of time so that charging of the surface, which could alter its secondary electron emission characteristics, does not occur. This report documents the numerical work we did on investigating this effect and the experimental work we did on pre-breakdown phenomena in gas.
Abstract not provided.
Proposed for publication in Powder Technology.
Abstract not provided.
Proposed for publication in Industrial and Engineering Chemistry Research.
Abstract not provided.
Proposed for publication in Bulletin of the American Ceramic Society, Vol. 82, No.5.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Special Issue of IEEE Journal of Quantum Electronics.
Abstract not provided.
Proposed for publication in Applied Physics Letters.
Abstract not provided.
Proposed for presentation at the 2003 IEEE Topical Conference on Wireless Communication Technology held October 15-17, 2003 in Honolulu, HI.
Abstract not provided.
Proposed for publication in Numerical Linear Algebra with Applications.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.