Publications

18 Results

Search results

Jump to search filters

DOE/EPRI Electricity Storage Handbook in Collaboration with NRECA

Huff, Georgianne H.; Akhil, Abbas A.; Kaun, Benjamin C.; Rastler, Dan M.; Chen, Stella B.; Cotter, Andrew L.; Bradshaw, Dale T.; Gauntlett, William D.; Currier, Aileen B.

The Electricity Storage Handbook (Handbook) is a how - to guide for utility and rural cooperative engineers, planners, and decision makers to plan and implement energy storage projects. The Handbook also serves as an information resource for investors and venture capitalists, providing the latest developments in technologies and tools to guide their evaluation s of energy storage opportunities. It includes a comprehensive database of the cost of current storage systems in a wide variety of electric utility and customer services, along with interconnection schematics. A list of significant past and present energy storage projects is provided for a practical perspective . This Handbook, jointly sponsored by the U.S. Department of Energy and the Electric Power Research Institute in collaboration with the National Rural Electric Cooperative Association, is published in electronic form at www.sandia.gov/ess. This Handbook is best viewed online.

More Details

Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes

Applied Energy

Klebanoff, Leonard E.; Munoz-Ramos, Karina M.; Akhil, Abbas A.; Curgus, Dita B.; Schenkman, Benjamin L.

Deployed on a commercial airplane, proton exchange membrane (PEM) fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they could offer a performance advantage for the airplane when using today's off-the-shelf technology. We also examine the effects of the fuel cell system on airplane performance with (1) different electrical loads, (2) different locations on the airplane, and (3) expected advances in fuel cell and hydrogen storage technologies.Through hardware analysis and thermodynamic simulation, we found that an additional fuel cell system on a commercial airplane is technically feasible using current technology. Although applied to a Boeing 787-type airplane, the method presented is applicable to other airframes as well. Recovery and on-board use of the heat and water that is generated by the fuel cell is an important method to increase the benefit of such a system. The best performance is achieved when the fuel cell is coupled to a load that utilizes the full output of the fuel cell for the entire flight. The effects of location are small and location may be better determined by other considerations such as safety and modularity.Although the PEM fuel cell generates power more efficiently than the gas turbine generators currently used, when considering the effect of the fuel cell system on the airplane's overall performance we found that an overall performance penalty (i.e., the airplane will burn more jet fuel) would result if using current technology for the fuel cell and hydrogen storage. However, we found that with expected developments in PEM fuel cell and hydrogen storage technology, PEM fuel cell systems can provide an overall benefit to airplane performance. © 2012 Elsevier Ltd.

More Details

Low-temperature fuel cell systems for commercial airplane auxiliary power

Pratt, Joseph W.; Klebanoff, Leonard E.; Curgus, Dita B.; Akhil, Abbas A.

This presentation briefly describes the ongoing study of fuel cell systems on-board a commercial airplane. Sandia's current project is focused on Proton Exchange Membrane (PEM) fuel cells applied to specific on-board electrical power needs. They are trying to understand how having a fuel cell on an airplane would affect overall performance. The fuel required to accomplish a mission is used to quantify the performance. Our analysis shows the differences between the base airplane and the airplane with the fuel cell. There are many ways of designing a system, depending on what you do with the waste heat. A system that requires ram air cooling has a large mass penalty due to increased drag. The bottom-line impact can be expressed as additional fuel required to complete the mission. Early results suggest PEM fuel cells can be used on airplanes with manageable performance impact if heat is rejected properly. For PEMs on aircraft, we are continuing to perform: (1) thermodynamic analysis (investigate configurations); (2) integrated electrical design (with dynamic modeling of the micro grid); (3) hardware assessment (performance, weight, and volume); and (4) galley and peaker application.

More Details

Navy fuel cell demonstration project

Akhil, Abbas A.; Black, Billy D.

This is the final report on a field evaluation by the Department of the Navy of twenty 5-kW PEM fuel cells carried out during 2004 and 2005 at five Navy sites located in New York, California, and Hawaii. The key objective of the effort was to obtain an engineering assessment of their military applications. Particular issues of interest were fuel cell cost, performance, reliability, and the readiness of commercial fuel cells for use as a standalone (grid-independent) power option. Two corollary objectives of the demonstration were to promote technological advances and to improve fuel performance and reliability. From a cost perspective, the capital cost of PEM fuel cells at this stage of their development is high compared to other power generation technologies. Sandia National Laboratories technical recommendation to the Navy is to remain involved in evaluating successive generations of this technology, particularly in locations with greater environmental extremes, and it encourages their increased use by the Navy.

More Details

Review of Test Facilities for Distributed Energy Resources

Akhil, Abbas A.; Akhil, Abbas A.

Since initiating research on integration of distributed energy resources (DER) in 1999, the Consortium for Electric Reliability Technology Solutions (CERTS) has been actively assessing and reviewing existing DER test facilities for possible demonstrations of advanced DER system integration concepts. This report is a compendium of information collected by the CERTS team on DER test facilities during this period.

More Details

Operating Environment and Functional Requirements for Intelligent Distributed Control in the Electric Power Grid

Smathers, Douglas C.; Akhil, Abbas A.

The restructuring of the U.S. power industry will surely lead to a greater dependence on computers and communications to allow appropriate information sharing for management and control of the power grid. This report describes the operating environment for system operations that control the bulk power system as it exists today including the role NERC plays in this process. Some high-level functional requirements for new approaches to control of the grid are listed followed by a description of the next research steps that are needed to identify specific information management functions.

More Details
18 Results
18 Results