This report is a summary of an LDRD project completed for the development of materials and structures conducive to advancing the state of the art for catalyst supports and diesel particulate traps. An ancillary development for bio-medical bone scaffolding was also realized. Traditionally, a low-pressure drop catalyst support, such as a ceramic honeycomb monolith, is used for catalytic reactions that require high flow rates of gases at high-temperatures. A drawback to the traditional honeycomb monoliths under these operating conditions is poor mass transfer to the catalyst surface in the straight-through channels. ''Robocasting'' is a unique process developed at Sandia National Laboratories that can be used to manufacture ceramic monoliths with alternative 3-dimensional geometries, providing tortuous pathways to increase mass transfer while maintaining low-pressure drops. These alternative 3-dimensional geometries may also provide a foundation for the development of self-regenerating supports capable of trapping and combusting soot particles from a diesel engine exhaust stream. This report describes the structures developed and characterizes the improved catalytic performance that can result. The results show that, relative to honeycomb monolith supports, considerable improvement in mass transfer efficiency is observed for robocast samples synthesized using an FCC-like geometry of alternating rods. Also, there is clearly a trade-off between enhanced mass transfer and increased pressure drop, which can be optimized depending on the particular demands of a given application. Practical applications include the combustion of natural gas for power generation, production of syngas, and hydrogen reforming reactions. The robocast lattice structures also show practicality for diesel particulate trapping. Preliminary results for trapping efficiency are reported as well as the development of electrically resistive lattices that can regenerate the structure by combusting the trapped soot. During this project an ancillary bio-medical application was discovered for lattices of hydroxyapatite. These structures show promise as bone scaffolds for the reparation of damaged bone. A case study depicting the manufacture of a customized device that fits into a damaged mandible is described.
The catalytic combustion of natural gas has been the topic of much research over the past decade. Interest in this technology results from a desire to decrease or eliminate the emissions of harmful nitrogen oxides (NOX) from gas turbine power plants. A low-pressure drop catalyst support, such as a ceramic monolith, is ideal for this high-temperature, high-flow application. A drawback to the traditional honeycomb monoliths under these operating conditions is poor mass transfer to the catalyst surface in the straight-through channels. 'Robocasting' is a unique process developed at Sandia National Laboratories that can be used to manufacture ceramic monoliths with alternative 3-dimensional geometries, providing tortuous pathways to increase mass transfer while maintaining low pressure drops. This report details the mass transfer effects for novel 3-dimensional robocast monoliths, traditional honeycomb-type monoliths, and ceramic foams. The mass transfer limit is experimentally determined using the probe reaction of CO oxidation over a Pt / {gamma}-Al{sub 2}O{sub 3} catalyst, and the pressure drop is measured for each monolith sample. Conversion versus temperature data is analyzed quantitatively using well-known dimensionless mass transfer parameters. The results show that, relative to the honeycomb monolith support, considerable improvement in mass transfer efficiency is observed for robocast samples synthesized using an FCC-like geometry of alternating rods. Also, there is clearly a trade-off between enhanced mass transfer and increased pressure drop, which can be optimized depending on the particular demands of a given application.
This report is a summary of the work completed in FY00 for science-based characterization of the processes used to fabricate cermet vias in source feedthrus. In particular, studies were completed to characterize the CND50 cermet slurry, characterize solvent imbibition, and identify critical via filling variables. These three areas of interest are important to several processes pertaining to the production of neutron generator tubes. Rheological characterization of CND50 slurry prepared with 94ND2 and Sandi94 primary powders were also compared. The 94ND2 powder was formerly produced at the GE Pinellas Plant and the Sandi94 is the new replacement powder produced at CeramTec. Processing variables that may effect the via-filling process were also studied and include: the effect of solids loading in the CND50 slurry; the effect of milling time; and the effect of Nuosperse (a slurry ''conditioner''). Imbibition characterization included a combination of experimental, theoretical, and computational strategies to determine solvent migration though complex shapes, specifically vias in the source feedthru component. Critical factors were determined using a controlled set of experiments designed to identify those variables that influence the occurrence of defects within the cermet filled via. These efforts were pursued to increase part production reliability, understand selected fundamental issues that impact the production of slurry-filled parts, and validate the ability of the computational fluid dynamics code, GOMA, to simulate these processes. Suggestions are made for improving the slurry filling of source feedthru vias.
The optimization of concentrated AlliedSignal GS-44 silicon nitride aqueous slurries for robocasting was investigated. The dispersion mechanisms of GS-44 Si{sub 3}N{sub 4} aqueous suspensions with and without polyacrylate were analyzed. The zero point of charge (ZPC) was at about pH 6. Well-dispersed GS-44 suspensions were obtained in the pH range from 7 to 11 by the addition of Darvan 821A. The influence of pH, amount of Darvan 821A and solids loading on the theological behavior of GS-44 aqueous suspensions was determined. A coagulant, aluminum nitrate, was used to control the yield stress and shear thinning behavior of highly loaded Si{sub 3}N{sub 4} slurries. Homogeneous and stable suspensions of 52 vol% GS-44 Si{sub 3}N{sub 4} were robocast successfully at pH 7.8 to pH 8.5. The sintering process, mechanical properties and microstructural characteristics of robocast GS-44 bars were determined.
Highly concentrated, aqueous mullite slurries were characterized and stabilized at solids concentrations as high as 60 vol% using less than 2 vol% of an organic polyelectrolyte dispersant. The maximum slurry concentration (60 vol%) is within 3 vol% of the maximum consolidated density of the slurry. The slurries were subsequently cast into parts by a solid freeform fabrication technique termed robocasting and characterized. Sedimentation analysis and viscometry provided the means of slurry characterization, while knowledge of polyelectrolyte and interparticle forces was used to interpret the sedimentation and viscometry data. Through proper control of slurry conditions, pseudoplastic mullite slurries were fabricated for use in the robocasting process. The slurries were robocast at 52 vol% solids and subsequently yielded a green density of 55 vol%. Fired densities of the robocasted slurries were high, with mullite >96% dense at 1,650 C.
This report is a summary of the work completed for an LDRD project. The objective of the project was to develop a solid freeform fabrication technique for ceramics and composites from fine particle slurries. The work was successful and resulted in the demonstration of a manufacturing technique called robocasting. Some ceramic components may pow be fabricated without the use of molds or tooling by dispensing colloidal suspensions through an orifice and stacking two-dimensional layers into three-dimensional shapes. Any conceivable two-dimensional pattern may be ''written'' layer by layer into a three-dimensional shape. Development of the robocasting technique required the materials expertise for fabrication and theological control of very highly concentrated fine particle slurries, and development of robotics for process control and optimization. Several ceramic materials have been manufactured and characterized. Development of techniques for robocasting multiple materials simultaneously have also been developed to build parts with unique structures or graded compositions.