Publications

19 Results

Search results

Jump to search filters

An evaluation of sensing technologies in a wind turbine blade: Some issues, challenges and lessons-learned

Proceedings of SPIE - The International Society for Optical Engineering

Rumsey, Mark A.

The Department of Energy and the Sandia National Laboratories Wind Power Technology Department have initiated a number of wind turbine blade sensing technology projects with a major goal of understanding the issues and challenges of incorporating new sensing technologies in wind turbine blades. The projects have been highly collaborative with teams from several commercial companies, universities, other national labs, government agencies and wind industry partners. Each team provided technology that was targeted for a particular application that included structural dynamics, operational monitoring, non-destructive evaluation and structural health monitoring. The sensing channels were monitored, in some or all cases, during blade fabrication, field testing of the blade on an operating wind turbine, and lab testing where the life of the blade was accelerated to blade failure. Implementing sensing systems in wind turbine blades is an engineering challenge and solutions often require the collaboration with a diverse set of expertise. This report discusses some of the key issues, challenges and lessons-learned while implementing sensing technologies in wind turbine blades. Some of the briefly discussed topics include cost and reliability, coordinate systems and references, blade geometry, blade composites, material compatibility, sensor ingress and egress, time synchronization, wind turbine operation environments, and blade failure mechanisms and locations. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

More Details

Modal analysis of CX-100 rotor blade and micon 65/13 wind turbine

Conference Proceedings of the Society for Experimental Mechanics Series

White, J.R.; Adams, D.E.; Rumsey, Mark A.

At the end of 2008 the United States became the largest producer of wind energy with 25,369 MW of electricity. This accounts for 1.25% of all U.S. electricity generated and enough to power 7 million homes. As wind energy becomes a key player in power generation and in the economy, so does the performance and reliability of wind turbines. To improve both performance and reliability, smart rotor blades are being developed that collocate reference measurements, aerodynamic actuation, and control on the rotor blade. Towards the development of a smart blade, SNL has fabricated a sensored rotor blade with embedded distributed accelerometer measurements to be used with operational loading methods to estimate the rotor blade deflection and dynamic excitation. These estimates would serve as observers for future smart rotor blade control systems. An accurate model of the rotor blade was needed for the development of the operational monitoring methods. An experimental modal analysis of the SNL sensored rotor blade (a modified CX-100 rotor blade) with embedded DC accelerometers was performed when hung with free boundary conditions and when mounted to a Micon 65/13 wind turbine. The modal analysis results and results from a static pull test were used to update an existing distributed parameter CX-100 rotor analytical blade model. This model was updated using percentage error estimates from cost functions of the weighted residuals. The model distributed stiffness parameters were simultaneously updated using the static and dynamic experimental results. The model updating methods decreased all of the chosen error metrics and will be used in future work to update the edge-wise model of the rotor blade and the full turbine model. ©2010 Society for Experimental Mechanics Inc.

More Details

Theoretical analysis of acceleration measurements in a model of an operating wind turbine

Rumsey, Mark A.

Wind loading from turbulence and gusts can cause damage in horizontal axis wind turbines. These unsteady loads and the resulting damage initiation and propagation are difficult to predict. Unsteady loads enter at the rotor and are transmitted to the drivetrain. The current generation of wind turbine has drivetrain-mounted vibration and bearing temperature sensors, a nacelle-mounted inertial measurement unit, and a nacelle-mounted anemometer and wind vane. Some advanced wind turbines are also equipped with strain measurements at the root of the rotor. This paper analyzes additional measurements in a rotor blade to investigate the complexity of these unsteady loads. By identifying the spatial distribution, amplitude, and frequency bandwidth of these loads, design improvements could be facilitated to reduce uncertainties in reliability predictions. In addition, dynamic load estimates could be used in the future to control high-bandwidth aerodynamic actuators distributed along the rotor blade to reduce the saturation of slower pitch actuators currently used for wind turbine blades. Local acceleration measurements are made along a rotor blade to infer operational rotor states including deflection and dynamic modal contributions. Previous work has demonstrated that acceleration measurements can be experimentally acquired on an operating wind turbine. Simulations on simplified rotor blades have also been used to demonstrate that mean blade loading can be estimated based on deflection estimates. To successfully apply accelerometers in wind turbine applications for load identification, the spectral and spatial characteristics of each excitation source must be understood so that the total acceleration measurement can be decomposed into contributions from each source. To demonstrate the decomposition of acceleration measurements in conjunction with load estimation methods, a flexible body model has been created with MSC.ADAMS{copyright} The benefit of using a simulation model as opposed to a physical experiment to examine the merits of acceleration-based load identification methods is that models of the structural dynamics and aerodynamics enable one to compare estimates of the deflection and loading with actual values. Realistic wind conditions are applied to the wind turbine and used to estimate the operational displacement and acceleration of the rotor. The per-revolution harmonics dominate the displacement and acceleration response. Turbulent wind produces broadband excitation that includes both the harmonics and modal vibrations, such as the tower modes. Power Spectral Density estimates of the acceleration along the span of the rotor blades indicate that the edge modes may be coupled to the second harmonic.

More Details

Hardware and Software Developments for the Accurate Time-Linked Data Acquisition System

Berg, Dale E.; Rumsey, Mark A.

Wind-energy researchers at Sandia National Laboratories have developed a new, light-weight, modular data acquisition system capable of acquiring long-term, continuous, multi-channel time-series data from operating wind-turbines. New hardware features have been added to this system to make it more flexible and permit programming via telemetry. User-friendly Windows-based software has been developed for programming the hardware and acquiring, storing, analyzing, and archiving the data. This paper briefly reviews the major components of the system, summarizes the recent hardware enhancements and operating experiences, and discusses the features and capabilities of the software programs that have been developed.

More Details

Application of Damage Detection Techniques Using Wind Turbine Modal Data

Rumsey, Mark A.

As any structure ages, its structural characteristics will also change. The goal of this work was to determine if modal response data fkom a wind turbine could be used in the detection of damage. The input stimuli to the wind turbine were from traditional modal hammer input and natural wind excitation. The structural response data was acquired using accelerometers mounted on the rotor of a parked and undamaged horizontal-axis wind turbine. The bolts at the root of one of the three blades were then loosened to simulate a damaged blade. The structural response data of the rotor was again recorded. The undamaged and damage-simulated datasets were compared using existing darnage detection algorithms. Also, a novel algorithm for combining the results of different damage detection algorithms was utilized in the assessment of the data. This paper summarizes the code development and discusses some preliminary damage detection results.

More Details

Non-Destructive Evaluation of Wind Turbine Blades Using an Infrared Camera

Rumsey, Mark A.

The use of a digital infrared as a non-destructive evaluation thermography camera (NDE) tool was ex- plored in two separate wind turbine blade fatigue tests. The fwst test was a fatigue test of part of a 13.1 meter wood-epoxy-composite blade. The second test was on a 4.25 meter pultruded fiber glass blade section driven at several mechanical resonant frequencies. The digital infrared camera can produce images of either the static temperature distribution on the surface of the specimen, or the dynamic temperature distribution that is in phase with a specific frequency on a vibrating specimen. The dynamic temperature distribution (due to thermoplastic effects) gives a measure of the sum of the principal stresses at each point on the surface. In the wood- epoxy-composite blade fatigue test, the point of ultimate failure was detected long before failure occurred. The mode shapes obtained with the digital infrared camera, from the resonant blade tests, were in very good agree- ment with the finite-element calculations. In addition, the static temperature images of the resonating blade showed two areas that contained cracks. Close-up dy- namic inf%red images of these areas showed the crack structure that agreed with subsequent dye-penetrant analysis.

More Details
19 Results
19 Results