Two-Dimensional Local Pollutant Transport By Cask Dpressurization
Abstract not provided.
Abstract not provided.
This Technical Manual contains descriptions of the calculation models and mathematical and numerical methods used in the RADTRAN 6 computer code for transportation risk and consequence assessment. The RADTRAN 6 code combines user-supplied input data with values from an internal library of physical and radiological data to calculate the expected radiological consequences and risks associated with the transportation of radioactive material. Radiological consequences and risks are estimated with numerical models of exposure pathways, receptor populations, package behavior in accidents, and accident severity and probability.
Packaging, Transport, Storage and Security of Radioactive Material
Risks of transporting radioactive materials can be estimated using the programme and code RADTRAN. Potential radiation doses to various receptors are calculated by RADTRAN, including doses from routine, incident free transportation and from transportation accidents. If radioactive material is released from a transportation vehicle in an accident, agricultural products in the plume footprint could be contaminated. This paper discusses a method for calculating radiation doses from ingestion of such radioactively contaminated food stuffs. Transportation of radioactive materials occurs throughout the USA, so that agricultural products along many transportation corridors could be affected. However, doses from ingesting agricultural crops contaminated from a traffic accident would be very small compared to natural background radiation. © W. S. Maney & Son Ltd 2014.
This document provides a detailed discussion and a guide for the use of the RadCat 6.0 Graphical User Interface input file generator for the RADTRAN code, Version 6. RadCat 6.0 integrates the newest analysis capabilities of RADTRAN 6.0, including an economic model, updated loss-of-lead shielding model, a new ingestion dose model, and unit conversion. As of this writing, the RADTRAN version in use is RADTRAN 6.02.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Health Physics
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
13th International High-Level Radioactive Waste Management Conference 2011, IHLRWMC 2011
This paper reviews how the risks of transporting very radioactive materials are modeled and how the resulting doses to the public compare with commonly experienced radiation doses like background radiation. Both routine, incident-free transportation and transportation accidents are discussed. Only transportation of used nuclear fuel and high-level radioactive waste is discussed.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Transportation for each step of a closed fuel cycle is analyzed in consideration of the availability of appropriate transportation infrastructure. The United States has both experience and certified casks for transportation that may be required by this cycle, except for the transport of fresh and used MOX fuel and fresh and used Advanced Burner Reactor (ABR) fuel. Packaging that had been used for other fuel with somewhat similar characteristics may be appropriate for these fuels, but would be inefficient. Therefore, the required neutron and gamma shielding, heat dissipation, and criticality were calculated for MOX and ABR fresh and spent fuel. Criticality would not be an issue, but the packaging design would need to balance neutron shielding and regulatory heat dissipation requirements.