Publications

Results 8701–8800 of 96,771

Search results

Jump to search filters

New experimental approach to understanding the chemical reactivity of oxide surfaces

Wong, Chun-Shang W.; Wang, Chen S.; Thurmer, Konrad T.; Whaley, Josh A.; Kolasinski, Robert K.

Metal oxides have been an attractive option for a range of applications, including hydrogen sensors, microelectronics, and catalysis, due to their reactivity and tunability. The properties of metal oxides can vary greatly on their precise surface structure; however, few surface science techniques can achieve atomistic-level determinations of surface structure, and fewer yet can do so for insulator surfaces. Low energy ion beam analysis offers a potential insulator-compatible solution to characterizing the surface structure of metal oxides. As a feasibility study, we apply low energy ion beam analysis to investigate the surface structure of a magnetite single crystal, Fe3O4(100). We obtain multi-angle maps using both forward-scattering low energy ion scattering (LEIS) and backscattering impact-collision ion scattering spectroscopy (ICISS). Both sets of experimental maps have intensity patterns that reflect the symmetries of the Fe3O4(100) surface structure. However, analytical interpretation of these intensity patterns to extract details of the surface structure is significantly more complex than previous LEIS and ICISS structural studies of one-component metal crystals, which had far more symmetries to exploit. To gain further insight into the surface structure, we model our experimental measurements with ion-trajectory tracing simulations using molecular dynamics. Our simulations provide a qualitative indication that our experimental measurements agree better with a subsurface cation vacancy model than a distorted bulk model.

More Details

Germanium Telluride Chalcogenide Switches for RF Applications

Hummel, Gwendolyn H.; Patrizi, G.A.; Young, Andrew I.; Schroeder, Katlin S.; Ruyack, Alexander R.; Schiess, Adrian R.; Finnegan, Patrick S.; Adams, David P.; Nordquist, Christopher N.

This project developed prototype germanium telluride switches, which can be used in RF applications to improve SWAP (size, weight, and power) and signal quality in RF systems. These switches can allow for highly reconfigurable systems, including antennas, communications, optical systems, phased arrays, and synthetic aperture radar, which all have high impact on current National Security goals for improved communication systems and communication technology supremacy. The final result of the project was the demonstration of germanium telluride RF switches, which could act as critical elements necessary for a single chip RF communication system that will demonstrate low SWAP and high reconfigurability

More Details

Improved forward voltage and external quantum efficiency scaling in multi-active region III-nitride LEDs

Applied Physics Express

Jamal-Eddine, Zane; Gunning, Brendan P.; Armstrong, Andrew A.; Rajan, Siddharth

Ultra-low voltage drop tunnel junctions (TJs) were utilized to enable multi-active region blue light emitting diodes (LEDs) with up to three active regions in a single device. The multi-active region blue LEDs were grown monolithically by metal-organic chemical vapor deposition (MOCVD) without growth interruption. This is the first demonstration of a MOCVD grown triple-junction LED. Optimized TJ design enabled near-ideal voltage and EQE scaling close to the number of junctions. This work demonstrates that with proper TJ design, improvements in wall-plug efficiency at high output power operation are possible by cascading multiple III-nitride based LEDs.

More Details

Preliminary Radioisotope Screening for Off-site Consequence Assessment of Advanced Non-LWR Systems

Andrews, Nathan C.; Laros, James H.; TACONI, ANNA M.; Leute, Jennifer E.

Currently a set of 71 radionuclides are accounted for in off-site consequence analysis for LWRs. Radionuclides of dose consequence are expected to change for non-LWRs, with radionuclides of interest being type-specific. This document identifies an expanded set of radionuclides that may need to be accounted for in multiple non-LWR systems: high temperature gas reactors (HTGRs); fluoride-salt-cooled high-temperature reactors (FHRs); thermal-spectrum fluoride-based molten salt reactors (MSRs); fast-spectrum chloride-based MSRs; and, liquid metal fast reactors with metallic fuel (LMRs) Specific considerations are provided for each reactor type in Chapter 2 through Chapter 5, and a summary of all recommendations is provided in Chapter 6. All identified radionuclides are already incorporated within the MACCS software, yet the development of tritium-specific and carbon-specific chemistry models are recommended.

More Details

Overvoltage prevention and curtailment reduction using adaptive droop-based supplementary control in smart inverters

Applied Sciences (Switzerland)

Maharjan, Manisha; Tamrakar, Ujjwol; Ni, Zhen; Bhattarai, Bishnu; Tonkoski, Reinaldo

Recent developments in the renewable energy sector have seen an unprecedented growth in residential photovoltaic (PV) installations. However, high PV penetration levels often lead to overvoltage problems in low-voltage (LV) distribution feeders. Smart inverter control such as active power curtailment (APC)-based overvoltage control can be implemented to overcome these challenges. The APC technique utilizes a constant droop-based approach which curtails power rigidly, which can lead to significant energy curtailment in the LV distribution feeders. In this paper, different variations of the APC technique with linear, quadratic, and exponential droops have been analyzed from the point-of-view of energy curtailment for a LV distribution network in North America. Further, a combinatorial approach using various droop-based APC methods in conjunction with adaptive dynamic programming (ADP) as a supplementary control scheme has also been proposed. The proposed approach minimizes energy curtailment in the LV distribution network by adjusting the droop gains. Simulation results depict that ADP in conjunction with exponential droop reduces the energy curtailment to approximately 50% compared to using the standard linear droop.

More Details

Science and Engineering of Cybersecurity by Uncertainty quantification and Rigorous Experimentation (SECURE) (Final Report)

Pinar, Ali P.; Tarman, Thomas D.; Swiler, Laura P.; Gearhart, Jared L.; Hart, Derek H.; Vugrin, Eric D.; Cruz, Gerardo C.; Arguello, Bryan A.; Geraci, Gianluca G.; Debusschere, Bert D.; Hanson, Seth T.; Outkin, Alexander V.; Thorpe, Jamie T.; Hart, William E.; Sahakian, Meghan A.; Gabert, Kasimir G.; Glatter, Casey J.; Johnson, Emma S.; Punla-Green, She'Ifa

This report summarizes the activities performed as part of the Science and Engineering of Cybersecurity by Uncertainty quantification and Rigorous Experimentation (SECURE) Grand Challenge LDRD project. We provide an overview of the research done in this project, including work on cyber emulation, uncertainty quantification, and optimization. We present examples of integrated analyses performed on two case studies: a network scanning/detection study and a malware command and control study. We highlight the importance of experimental workflows and list references of papers and presentations developed under this project. We outline lessons learned and suggestions for future work.

More Details

Multiscale assessment of caprock integrity for geologic carbon storage in the pennsylvanian farnsworth unit, Texas, USA

Energies

Trujillo, Natasha; Rose-Coss, Dylan; Heath, Jason; Dewers, Thomas D.; Ampomah, William; Mozley, Peter S.; Cather, Martha

Leakage pathways through caprock lithologies for underground storage of CO2 and/or enhanced oil recovery (EOR) include intrusion into nano-pore mudstones, flow within fractures and faults, and larger-scale sedimentary heterogeneity (e.g., stacked channel deposits). To assess multiscale sealing integrity of the caprock system that overlies the Morrow B sandstone reservoir, Farnsworth Unit (FWU), Texas, USA, we combine pore-to-core observations, laboratory testing, well logging results, and noble gas analysis. A cluster analysis combining gamma ray, compressional slowness, and other logs was combined with caliper responses and triaxial rock mechanics testing to define eleven lithologic classes across the upper Morrow shale and Thirteen Finger limestone caprock units, with estimations of dynamic elastic moduli and fracture breakdown pressures (minimum horizontal stress gradients) for each class. Mercury porosimetry determinations of CO2 column heights in sealing formations yield values exceeding reservoir height. Noble gas profiles provide a “geologic time-integrated” assessment of fluid flow across the reservoir-caprock system, with Morrow B reservoir measurements consistent with decades-long EOR water-flooding, and upper Morrow shale and lower Thirteen Finger limestone values being consistent with long-term geohydrologic isolation. Together, these data suggest an excellent sealing capacity for the FWU and provide limits for injection pressure increases accompanying carbon storage activities.

More Details

Efficient flexible characterization of quantum processors with nested error models

New Journal of Physics

Nielsen, Erik N.; Rudinger, Kenneth M.; Proctor, Timothy J.; Young, Kevin C.; Blume-Kohout, Robin J.

We present a simple and powerful technique for finding a good error model for a quantum processor. The technique iteratively tests a nested sequence of models against data obtained from the processor, and keeps track of the best-fit model and its wildcard error (a metric of the amount of unmodeled error) at each step. Each best-fit model, along with a quantification of its unmodeled error, constitutes a characterization of the processor. We explain how quantum processor models can be compared with experimental data and to each other. We demonstrate the technique by using it to characterize a simulated noisy two-qubit processor.

More Details

Femtosecond Reflectance Spectroscopy for Energetic Material Diagnostics

Cole-Filipiak, Neil C.; Schrader, Paul E.; Luk, Ting S.; Ramasesha, Krupa R.

Understanding the fundamental mechanisms underpinning shock initiation is critical to predicting energetic material (EM) safety and performance. Currently, the timescales and pathways by which shock-excited lattice modes transfer energy into specific chemical bonds remains an open question. Towards understanding these mechanisms, our group has previously measured the vibrational energy transfer (VET) pathways in several energetic thin films using broadband, femtosecond transient absorption spectroscopy. However, new technologies are needed to move beyond these thin film surrogates and measure broadband VET pathways in realistic EM morphologies. Herein, we describe a new broadband, femtosecond, attenuated total reflectance spectroscopy apparatus. Performance of the system is benchmarked against published data and the first VET results from a pressed EM pellet are presented. This technology enables fundamental studies of VET dynamics across sample configurations and environments (pressure, temperature, etc .) and supports the potential use of VET studies in the non-destructive surveillance of EM components.

More Details

Evidence for a high temperature whisker growth mechanism active in tungsten during in situ nanopillar compression

Nanomaterials

Jawaharram, Gowtham S.; Barr, Christopher M.; Hattar, Khalid M.; Dillon, Shen J.

A series of nanopillar compression tests were performed on tungsten as a function of temperature using in situ transmission electron microscopy with localized laser heating. Surface oxidation was observed to form on the pillars and grow in thickness with increasing temperature. Deformation between 850◦C and 1120◦C is facilitated by long-range diffusional transport from the tungsten pillar onto adjacent regions of the Y2O3-stabilized ZrO2 indenter. The constraint imposed by the surface oxidation is hypothesized to underly this mechanism for localized plasticity, which is generally the so-called whisker growth mechanism. The results are discussed in context of the tungsten fuzz growth mechanism in He plasma-facing environments. The two processes exhibit similar morphological features and the conditions under which fuzz evolves appear to satisfy the conditions necessary to induce whisker growth.

More Details

GDSA Repository Systems Analysis Investigations in FY2021

LaForce, Tara; Basurto, Eduardo B.; Chang, Kyung W.; Jayne, Richard S.; Leone, Rosemary C.; Nole, Michael A.; Laros, James H.; Stein, Emily S.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy Office of Nuclear Energy, Office of Spent Fuel and Waste Disposition (SFWD), has been conducting research and development on generic deep geologic disposal systems (i.e., geologic repositories). This report describes specific activities in the Fiscal Year (FY) 2021 associated with the Geologic Disposal Safety Assessment (GDSA) Repository Systems Analysis (RSA) work package within the SFWST Campaign. The overall objective of the GDSA RSA work package is to develop generic deep geologic repository concepts and system performance assessment (PA) models in several host-rock environments, and to simulate and analyze these generic repository concepts and models using the GDSA Framework toolkit, and other tools as needed.

More Details

Nonlinear Interface Reduction for Time-Domain Analysis of Hurty/Craig-Bampton Superelements with Frictional Contact

Journal of Sound and Vibration

Hughes, Patrick J.; Kuether, Robert J.

Virtual prototyping in engineering design rely on modern numerical models of contacting structures with accurate resolution of interface mechanics, which strongly affect the system-level stiffness and energy dissipation due to frictional losses. High-fidelity modeling within the localized interfaces is required to resolve local quantities of interest that may drive design decisions. The high-resolution finite element meshes necessary to resolve inter-component stresses tend to be computationally expensive, particularly when the analyst is interested in response time histories. The Hurty/Craig-Bampton (HCB) transformation is a widely used method in structural dynamics for reducing the interior portion of a finite element model while having the ability to retain all nonlinear contact degrees of freedom (DOF) in physical coordinates. These models may still require many DOF to adequately resolve the kinematics of the interface, leading to inadequate reduction and computational savings. This study proposes a novel interface reduction method to overcome these challenges by means of system-level characteristic constraint (SCC) modes and properly orthogonal interface modal derivatives (POIMDs) for transient dynamic analyses. Both SCC modes and POIMDs are computed using the reduced HCB mass and stiffness matrices, which can be directly computed from many commercial finite element analysis software. Comparison of time history responses to an impulse-type load in a mechanical beam assembly indicate that the interface-reduced model correlates well with the HCB truth model. Localized features like slip and contact area are well-represented in the time domain when the beam assembly is loaded with a broadband excitation. The proposed method also yields reduced-order models with greater critical timestep lengths for explicit integration schemes.

More Details

Multi-Resolution Characterization of the Coupling Effects of Molten Salts, High Temperature and Irradiation on Intergranular Fracture

Dingreville, Remi P.; Bielejec, Edward S.; Chen, Elton Y.; Deo, C.; Kim, E.; Spearot, D.E.; Startt, Jacob K.; Stewart, James A.; Sugar, Joshua D.; Vizoso, D.; Weck, Philippe F.; Young, Joshua M.

This project focused on providing a fundamental physico-chemical understanding of the coupling mechanisms of corrosion- and radiation-induced degradation at material-salt interfaces in Ni-based alloys operating in emulated Molten Salt Reactor(MSR) environments through the use of a unique suite of aging experiments, in-situ nanoscale characterization experiments on these materials, and multi-physics computational models. The technical basis and capabilities described in this report bring us a step closer to accelerate the deployment of MSRs by closing knowledge gaps related to materials degradation in harsh environments.

More Details

Seismic Shake Table Test Plan

Kalinina, Elena A.; Ammerman, Douglas J.; Lujan, Lucas A.

This report is a preliminary test plan of the seismic shake table test. The final report will be developed when all decisions regarding the test hardware, instrumentation, and shake table inputs are made. A new revision of this report will be issued in spring of 2022. The preliminary test plan documents the free-field ground motions that will be used as inputs to the shake table, the test hardware, and instrumentation. It also describes the facility at which the test will take place in late summer of 2022.

More Details

Verification of Data-Driven Models of Physical Phenomena using Interpretable Approximation

Ray, Jaideep R.; Barone, Matthew F.; Domino, Stefan P.; Banerjee, Tania; Ranka, Sanjay

Machine-learned models, specifically neural networks, are increasingly used as “closures” or “constitutive models” in engineering simulators to represent fine-scale physical phenomena that are too computationally expensive to resolve explicitly. However, these neural net models of unresolved physical phenomena tend to fail unpredictably and are therefore not used in mission-critical simulations. In this report, we describe new methods to authenticate them, i.e., to determine the (physical) information content of their training datasets, qualify the scenarios where they may be used and to verify that the neural net, as trained, adhere to physics theory. We demonstrate these methods with neural net closure of turbulent phenomena used in Reynolds Averaged Navier-Stokes equations. We show the types of turbulent physics extant in our training datasets, and, using a test flow of an impinging jet, identify the exact locations where the neural network would be extrapolating i.e., where it would be used outside the feature-space where it was trained. Using Generalized Linear Mixed Models, we also generate explanations of the neural net (à la Local Interpretable Model agnostic Explanations) at prototypes placed in the training data and compare them with approximate analytical models from turbulence theory. Finally, we verify our findings by reproducing them using two different methods.

More Details

High-resolution magnetic microscopy applications using nitrogen-vacancy centers in diamond

Kehayias, Pauli M.

Magnetic microscopy with high spatial resolution helps to solve a variety of technical problems in condensed-matter physics, electrical engineering, biomagnetism, and geomagnetism. In this work we used quantum diamond magnetic microscope (QDMM) setups, which use a dense uniform layer of magnetically-sensitive nitrogen-vacancy (NV) centers in diamond to image an external magnetic field using a fluorescence microscope. We used this technique for imaging few-micron ferromagnetic needles used as a physically unclonable function (PUF) and to passively interrogate electric current paths in a commercial 555 timer integrated circuit (IC). As part of the QDMM development, we also found a way to calculate ion implantation recipes to create diamond samples with dense uniform NV layers at the surface. This work opens the possibility for follow-up experiments with 2D magnetic materials, ion implantation, and electronics characterization and troubleshooting.

More Details

Update on the Simulation of Commercial Drying of Spent Nuclear Fuel

Durbin, S.G.; Lindgren, Eric R.; Pulido, Ramon P.; Laros, James H.; Fasano, Raymond E.

The purpose of this report is to document improvements in the simulation of commercial vacuum drying procedures at the Nuclear Energy Work Complex at Sandia National Laboratories. Validation of the extent of water removal in a dry spent nuclear fuel storage system based on drying procedures used at nuclear power plants is needed to close existing technical gaps. Operational conditions leading to incomplete drying may have potential impacts on the fuel, cladding, and other components in the system. A general lack of data suitable for model validation of commercial nuclear canister drying processes necessitates additional, well-designed investigations of drying process efficacy and water retention. Scaled tests that incorporate relevant physics and well-controlled boundary conditions are essential to provide insight and guidance to the simulation of prototypic systems undergoing drying processes.

More Details

Recommendations for Distributed Energy Resource Patching

Johnson, Jay

While computer systems, software applications, and operational technology (OT)/Industrial Control System (ICS) devices are regularly updated through automated and manual processes, there are several unique challenges associated with distributed energy resource (DER) patching. Millions of DER devices from dozens of vendors have been deployed in home, corporate, and utility network environments that may or may not be internet-connected. These devices make up a growing portion of the electric power critical infrastructure system and are expected to operate for decades. During that operational period, it is anticipated that critical and noncritical firmware patches will be regularly created to improve DER functional capabilities or repair security deficiencies in the equipment. The SunSpec/Sandia DER Cybersecurity Workgroup created a Patching Subgroup to investigate appropriate recommendations for the DER patching, holding fortnightly meetings for more than nine months. The group focused on DER equipment, but the observations and recommendations contained in this report also apply to DERMS tools and other OT equipment used in the end-to-end DER communication environment. The group found there were many standards and guides that discuss firmware lifecycles, patch and asset management, and code-signing implementations, but did not singularly cover the needs of the DER industry. This report collates best practices from these standards organizations and establishes a set of best practices that may be used as a basis for future national or international patching guides or standards.

More Details

Code Development Supporting a Non-Thermal Source of High Fluence Warm X-Ray

Bennett, Nichelle L.; Welch, Dale R.

A six-month research effort has advanced the hybrid kinetic-fluid modeling capability required for developing non-thermal warm x-ray sources on Z. The three particle treatments of quasi-neutral, multi-fluid, and kinetic are demonstrated in 1D simulations of an Ar gas puff. The simulations determine required resolutions for the advanced implicit solution techniques and debug hybrid particle treatments with equation-of-state and radiation transport. The kinetic treatment is used in preliminary analysis of the non-Maxwellian nature of a gas target. It is also demonstrates the sensitivity of the cyclotron and collision frequencies in determining the transition from thermal to non-thermal particle populations. Finally, a 2D Ar gas puff simulation of a Z shot demonstrates the readiness to proceed with realistic target configurations. The results put us on a very firm footing to proceed to a full LDRD which includes continued development transition criteria and x-ray yield calculation.

More Details

Conditional Point Sampling: A stochastic media transport algorithm with full geometric sampling memory

Journal of Quantitative Spectroscopy and Radiative Transfer

Vu, Emily H.; Olson, Aaron J.

Current methods for stochastic media transport are either computationally expensive or, by nature, approximate. Moreover, none of the well-developed, benchmarked approximate methods can compute the variance caused by the stochastic mixing, a quantity especially important to safety calculations. Therefore, we derive and apply a new conditional probability function (CPF) for use in the recently developed stochastic media transport algorithm Conditional Point Sampling (CoPS), which 1) leverages the full intra-particle memory of CoPS to yield errorless computation of stochastic media outputs in 1D, binary, Markovian-mixed media, and 2) leverages the full inter-particle memory of CoPS and the recently developed Embedded Variance Deconvolution method to yield computation of the variance in transport outputs caused by stochastic material mixing. Numerical results demonstrate errorless stochastic media transport as compared to reference benchmark solutions with the new CPF for this class of stochastic mixing as well as the ability to compute the variance caused by the stochastic mixing via CoPS. Using previously derived, non-errorless CPFs, CoPS is further found to be more accurate than the atomic mix approximation, Chord Length Sampling (CLS), and most of memory-enhanced versions of CLS surveyed. In addition, we study the compounding behavior of CPF error as a function of cohort size (where a cohort is a group of histories that share intra-particle memory) and recommend that small cohorts be used when computing the variance in transport outputs caused by stochastic mixing.

More Details

Direct Subsurface Measurements through Precise Micro Drilling

Su, Jiann-Cherng S.; Bettin, Giorgia B.; Buerger, Stephen B.; Rittikaidachar, Michal; Hobart, Clinton G.; Slightam, Jonathon S.; McBrayer, Kepra M.; Gonzalez, Levi M.; Pope, Joseph S.; Foris, Adam J.; Bruss, Kathryn; Kim, Raymond; Mazumdar, Anirban

Wellbore integrity is a significant problem in the U.S. and worldwide, which has serious adverse environmental and energy security consequences. Wells are constructed with a cement barrier designed to last about 50 years. Indirect measurements and models are commonly used to identify wellbore damage and leakage, often producing subjective and even erroneous results. The research presented herein focuses on new technologies to improve monitoring and detection of wellbore failures (leaks) by developing a multi-step machine learning approach to localize two types of thermal defects within a wellbore model, a prototype mechatronic system for automatically drilling small diameter holes of arbitrary depth to monitor the integrity of oil and gas wells in situ, and benchtop testing and analyses to support the development of an autonomous real-time diagnostic tool to enable sensor emplacement for monitoring wellbore integrity. Each technology was supported by experimental results. This research has provided tools to aid in the detection of wellbore leaks and significantly enhanced our understanding of the interaction between small-hole drilling and wellbore materials.

More Details

Constitutive Model Development for Aging Polymer Encapsulants (ASC P&EM FY2021 L2 Milestone 7836)

Cundiff, Kenneth N.; Long, Kevin N.; Kropka, Jamie M.; Carroll, Shianne C.; Groves, Catherine G.

This SAND report fulfills the completion requirements for the ASC Physics and Engineering Modeling Level 2 Milestone 7836 during Fiscal Year 2021. The Sandia Simplified potential energy clock (SPEC) non-linear viscoelastic constitutive model was developed to predict a whole host of polymer glass physical behaviors in order to provide a tool to assess the effects of stress on these materials over their lifecycle. Polymer glasses are used extensively in applications such as electronics packaging, where encapsulants and adhesives can be critical to device performance. In this work, the focus is on assessing the performance of the model in predicting material evolution associated with long-term physical aging, an area that the model has not been fully vetted in. These predictions are key to utilizing models to help demonstrate electronics packaging component reliability over decades long service lives, a task that is very costly and time consuming to execute experimentally. The initiating hypothesis for the work was that a model calibration process can be defined that enables confidence in physical aging predictions under ND relevant environments and timescales without sacrificing other predictive capabilities. To test the hypothesis, an extensive suite of calibration and aging data was assembled from a combination of prior work and collaborating projects (Aging and Lifetimes as well as the DoD Joint Munitions Program) for two mission relevant epoxy encapsulants, 828DGEBA/DEA and 828DGEBA/T403. Multiple model calibration processes were developed and evaluated against the entire set of data for each material. A qualitative assessment of each calibration's ability to predict the wide range of aging responses was key to ranking the calibrations against each other. During this evaluation, predictions that were identified as non-physical, i.e., demonstrated something that was qualitatively different than known material behavior, were heavily weighted against the calibration performance. Thus, unphysical predictions for one aspect of aging response could generate a lower overall rating for a calibration process even if that process generated better quantitative predictions for another aspect of aging response. This insurance that all predictions are qualitatively correct is important to the overall aim of utilizing the model to predict residual stress evolution, which will depend on the interplay amongst the different material aging responses. The DSC-focused calibration procedure generated the best all-around aging predictions for both materials, demonstrating material models that can qualitatively predict the whole host of different physical aging responses that have been measured. This step forward in predictive capability comes from an unanticipated source, utilization of calorimetry measurements to specify model parameters. The DSC-focused calibration technique performed better than compression-focused techniques that more heavily weigh measurements more closely related to the structural responses to be predicted. Indeed, the DSC-focused calibration procedure was only possible due to recent incorporation of the enthalpy and heat capacity features into SPEC that was newly verified during this L2 milestone. Fundamentally similar aspects of the two material model calibrations as well as parametric studies to assess sensitives of the aging predictions are discussed within the report. A perspective on the next steps to the overall goal of residual stress evolution predictions under stockpile conditions closes the report.

More Details

Sensitivity Analysis Comparisons on Geologic Case Studies: An International Collaboration

Swiler, Laura P.; Becker, Dirk-Alexander; Brooks, Dusty M.; Govaerts, Joan; Koskinen, Lasse; Plischke, Elmar; Rohlig, Klaus-Jurgen; Saveleva, Elena; Spiessl, Sabine M.; Stein, Emily S.; Svitelman, Valentina

Over the past four years, an informal working group has developed to investigate existing sensitivity analysis methods, examine new methods, and identify best practices. The focus is on the use of sensitivity analysis in case studies involving geologic disposal of spent nuclear fuel or nuclear waste. To examine ideas and have applicable test cases for comparison purposes, we have developed multiple case studies. Four of these case studies are presented in this report: the GRS clay case, the SNL shale case, the Dessel case, and the IBRAE groundwater case. We present the different sensitivity analysis methods investigated by various groups, the results obtained by different groups and different implementations, and summarize our findings.

More Details

Instantaneous Three-Dimensional Temperature Measurements via Ultrafast Laser Spectroscopy with Structured Light

Richardson, Daniel R.

Detonations and flames are characterized by three-dimensional (3D) temperature fields, yet state-of- the-art temperature measurement techniques yield information at a point or along a line. The goal of the research documented here was to combine ultrafast laser spectroscopy and structured illumination to deliver an unprecedented measurement capability—three-dimensional, instantaneous temperature measurements in a gas-phase volume. To achieve this objective, different parts of the proposed technique were developed and tested independently. Structured illumination was used to image particulate matter (soot) in a turbulent flame at multiple planes using a single laser pulse and a single camera. Emission spectroscopy with structured detection was demonstrated for emission- based measurements of explosives with enhance dimensionality. Finally, an instrument for multi- planar laser-based temperature measurement technique was developed. Structured illumination techniques will continue to be developed for multi-dimensional and multi-parameter measurements. These new measurement capabilities will be important for heat transfer and fluid dynamic research areas.

More Details

Safety and Security Defense-in-Depth for Nuclear Power Plants

Clark, Andrew; Rowland, Michael T.

This report describes the risk-informed technical elements that will contribute to a defense-in-depth assessment for cybersecurity. Risk-informed cybersecurity must leverage the technical elements of a risk-informed approach appropriately in order to evaluate cybersecurity risk insights. HAZCADS and HAZOP+ are suitable methodologies to model the connection between digital harm and process hazards. Risk assessment modeling needs to be expanded beyond HAZCADS and HAZOP+ to consider the sequence of events that lead to plant consequences. Leveraging current practices in PRA can lead to categorization of digital assets and prioritizing digital assets commensurate with the risk. Ultimately, the culmination of cyber hazard methodologies, event sequence modeling, and digital asset categorization will facilitate a defense-in-depth assessment of cybersecurity.

More Details

Integrated System and Application Continuous Performance Monitoring and Analysis Capability

Aaziz, Omar R.; Allan, Benjamin A.; Brandt, James M.; Cook, Jeanine C.; Devine, Karen D.; Elliott, James E.; Gentile, Ann C.; Hammond, Simon D.; Kelley, Brian M.; Lopatina, Lena; Moore, Stan G.; Olivier, Stephen L.; Laros, James H.; Poliakoff, David Z.; Pawlowski, Roger P.; Regier, Phillip A.; Schmitz, Mark E.; Schwaller, Benjamin S.; Surjadidjaja, Vanessa S.; Swan, Matthew S.; Tucker, Nick; Tucker, Thomas; Vaughan, Courtenay T.; Walton, Sara P.

Scientific applications run on high-performance computing (HPC) systems are critical for many national security missions within Sandia and the NNSA complex. However, these applications often face performance degradation and even failures that are challenging to diagnose. To provide unprecedented insight into these issues, the HPC Development, HPC Systems, Computational Science, and Plasma Theory & Simulation departments at Sandia crafted and completed their FY21 ASC Level 2 milestone entitled "Integrated System and Application Continuous Performance Monitoring and Analysis Capability." The milestone created a novel integrated HPC system and application monitoring and analysis capability by extending Sandia's Kokkos application portability framework, Lightweight Distributed Metric Service (LDMS) monitoring tool, and scalable storage, analysis, and visualization pipeline. The extensions to Kokkos and LDMS enable collection and storage of application data during run time, as it is generated, with negligible overhead. This data is combined with HPC system data within the extended analysis pipeline to present relevant visualizations of derived system and application metrics that can be viewed at run time or post run. This new capability was evaluated using several week-long, 290-node runs of Sandia's ElectroMagnetic Plasma In Realistic Environments ( EMPIRE ) modeling and design tool and resulted in 1TB of application data and 50TB of system data. EMPIRE developers remarked this capability was incredibly helpful for quickly assessing application health and performance alongside system state. In short, this milestone work built the foundation for expansive HPC system and application data collection, storage, analysis, visualization, and feedback framework that will increase total scientific output of Sandia's HPC users.

More Details

A New Approach to Fundamental Mechanism Discovery in Polymer Upcycling

Sheps, Leonid S.; Osborn, David L.; Hansen, Nils H.

We present a new experimental methodology for detailed experimental investigations of depolymerization reactions over solid catalysts. This project aims to address a critical need in fundamental research on chemical upcycling of polymers – the lack of rapid, sensitive, isomerselective probing techniques for the detection of reaction intermediates and products. Our method combines a heterogeneous catalysis reactor for the study of multiphase (gas/polymer melt/solid) systems, coupled to a vacuum UV photoionization time-of-flight mass spectrometer. This apparatus draws on our expertise in probing complex gas-phase chemistry and enables highthroughput, detailed chemical speciation measurements of the gas phase above the catalyst, providing valuable information on the heterogeneous catalytic reactions. Using this approach, we investigated the depolymerization of high-density polyethylene (HDPE) over Ir-doped zeolite catalysts. We showed that the product distribution was dominated by low-molecular weight alkenes with terminal C=C double bonds and revealed the presence of many methyl-substituted alkenes and alkanes, suggesting extensive methyl radical chemistry. In addition, we investigated the fundamental reactivity of model oligomer molecules n-butane and isobutane over ZSM-5 zeolites. We demonstrated the first direct detection of methyl radical intermediates, confirming the key role of methyl in zeolite-catalyzed activation of alkanes. Our results show the potential of this experimental method to achieve deep insight into the complex depolymerization reactions and pave the way for detailed mechanistic studies, leading to increased fundamental understanding of key processes in chemical upcycling of polymers.

More Details

Assessing and mapping extreme wave height along the Gulf of Mexico coast

Ahn, Seongho; Neary, Vincent S.; Chartrand, Chris; Pluemer, Sean

The effect of extreme waves on the coastal community includes inundation, loss of habitats, increasing shoreline erosion, and increasing risks to coastal infrastructures (e.g., ports, breakwaters, oil and gas platforms), important for supporting coastal resilience. The coastal communities along the US Gulf of Mexico are very low-lying, which makes the region particularly vulnerable to impacts of extreme waves generated by storm events. We propose assessing and mapping the risks from extreme waves for the Gulf of Mexico coast to support coastal resiliency planning. The risks will be assessed by computing n-year recurring wave height (e.g., 1, 5, 50, 100-year) using 32-year wave hindcast data and various extreme value analysis techniques including Peak- Over-Threshold and Annual Maxima method. The characteristics of the extreme waves, e.g., relations between the mean and extreme wave climates, directions associated with extreme waves, will be investigated. Hazard maps associated with extreme wave heights at different return periods will be generated to help planners identify potential risks and envision places that are less susceptible to future storm damage.

More Details

Mapping Stochastic Devices to Probabilistic Algorithms

Aimone, James B.; Safonov, Alexander M.

Probabilistic and Bayesian neural networks have long been proposed as a method to incorporate uncertainty about the world (both in training data and operation) into artificial intelligence applications. One approach to making a neural network probabilistic is to leverage a Monte Carlo sampling approach that samples a trained network while incorporating noise. Such sampling approaches for neural networks have not been extensively studied due to the prohibitive requirement of many computationally expensive samples. While the development of future microelectronics platforms that make this sampling more efficient is an attractive option, it has not been immediately clear how to sample a neural network and what the quality of random number generation should be. This research aimed to start addressing these two fundamental questions by examining basic “off the shelf” neural networks can be sampled through a few different mechanisms (including synapse “dropout” and neuron “dropout”) and examine how these sampling approaches can be evaluated both in terms of evaluating algorithm effectiveness and the required quality of random numbers.

More Details
Results 8701–8800 of 96,771
Results 8701–8800 of 96,771