Multi-point Electron Density Measurements Using Photonic Doppler Velocimetry (PDV)
Abstract not provided.
Abstract not provided.
IEEE International Conference on Plasma Science
A challenge for TW-class accelerators, such as Sandia's Z machine, is efficient power coupling due to current loss in the final power feed. It is also important to understand how such losses will scale to larger next generation pulsed power (NGPP) facilities. While modeling is studying these power flow losses it is important to have diagnostic that can experimentally measure plasmas in these conditions and help inform simulations. The plasmas formed in the power flow region can be challenging to diagnose due to both limited lines of sight and being at significantly lower temperatures and densities than typical plasmas studied on Z. This necessitates special diagnostic development to accurately measure the power flow plasma on Z.
IEEE International Conference on Plasma Science
Power-flow studies on the 30-MA, 100-ns Z facility at Sandia National Labs have shown that plasmas in the facility's magnetically insulated transmission lines can result in a loss of current to the load.1 During the current pulse, electrode heating causes neutral surface contaminants (water, hydrogen, hydrocarbons, etc.) to desorb, ionize, and form plasmas in the anode-cathode gap.2 Shrinking typical electrode thicknesses (∼1 cm) to thin foils (5-200 μm) produces observable amounts of plasma on smaller pulsed power drivers <1 MA).3 We suspect that as electrode material bulk thickness decreases relative to the skin depth (50-100 μm for a 100-500-ns pulse in aluminum), the thermal energy delivered to the neutral surface contaminants increases, and thus desorb faster from the current carrying surface.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.