This report presents an efficient and accurate method for integrating a system of ordinary differential equations, particularly those arising from a spatial discretization of partially differential equations. The algorithm developed, termed the IMEX a algorithm, belongs to a class of algorithms known as implicit-explicit (IMEX) methods. The explicit step is based on a fifth order Runge-Kutta explicit step known as the Dormand-Prince algorithm, which adaptively modifies the time step by calculating the error relative to a fourth order estimation. The implicit step, which follows the explicit step, is based on a backward Euler method, a special case of the generalized trapezoidal method. Reasons for choosing both of these methods, along with the algorithm development are presented. In applications that have less stringent accuracy requirements, several other methods are available through the IMEX a toolbox, each of which simplify the fifth order Dormand-Prince explicit step: the third order Bogacki-Shampine method, the second order Midpoint method, and the first order Euler method. The performance of the algorithm is evaluated on to examples. First, a two pawl system with contact is modeled. Results predicted by the IMEX a algorithm are compared to those predicted by six widely used integration schemes. The IMEX a algorithm is demonstrated to be significantly faster (by up to an order of magnitude) and at least as accurate as all of the other methods considered. A second example, an acoustic standing wave, is presented in order to assess the accuracy of the IMEX a algorithm. Finally, sample code is given in order to demonstrate the implementation of the proposed algorithm.
Sodium-sulfur batteries, offering high capacity and low cost, are promising alternative to lithium-ion batteries for large-scale energy storage applications. The conventional sodium-sulfur batteries, operating at a high temperature of 300–350°C in a molten state, could lead to severe safety problems. However, the room temperature sodium-sulfur batteries using common organic liuid electrolytes still face a significant challenge due to the dissolution of intermediate sodium polysulfides. For this study, we developed room temperatue sodium-sulfur batteries using a unique porous carbon/sulfur (C/S) composite cathode, which was synthesized by infusing sulfur vapor into porous carbon sphere particles at a high temperatrure of 600°C. The porous C/S composites delivered a reversible capacity of ~860 mAh/g and retained 83% after 300 cycles. The Coulombic efficiency of as high as 97% was observed over 300 cycles. The superior electrochemical performance is attrbuted to the super sulfur stability as evidenced by its lower sensitivity to probe beam irradiation in TEM, XPS and Raman charaterization and high evaperation temperature in TGA. The results make it promising for large-scale grid energy storage and electric vehicles.
A composite material consisting of TiO2 nanotubes (NTs) with WO3 electrodeposited homogeneously on its surface has been fabricated, detached from its substrate, and attached to a fluorine-doped tin oxide film on glass for application to electrochromic (EC) reactions. A paste of TiO2 made from commercially available TiO2 nanoparticles creates an interface for the TiO2 NT film to attach to the FTO glass, which is conductive and does not cause solution-phase ions in an electrolyte to bind irreversibly with the material. The effect of NT length on the current density and the EC contrast of the material were studied. The EC redox reaction seen in this material is diffusion- limited, having relatively fast reaction rates at the electrode surface. The composite WO3/TiO2 nanostructures showed higher ion storage capacity, better stability, enhanced EC contrast and longer memory time compared with the pure WO3 and TiO2.
Sandia National Laboratories hosted a workshop on the future of infrastructure security on February 27-28, 2013, in Albuquerque, NM. The 17 participants came from backgrounds as diverse as federal policy, the insurance industry, infrastructure management, and technology development. The purpose of the workshop was to surface key issues, identify directions forward, and lay groundwork for cross-sectoral and cross-disciplinary collaborations. The workshop addressed issues such as the problem space (what is included in infrastructure problems?), the general types of threats to infrastructure (such as acute or chronic, system-inherent or exogenously imposed) and definitions of secure and resilient infrastructures. The workshop concluded with a consideration of stakeholders and players in the infrastructure world, and identification of specific activities that could be undertaken by the Department of Homeland Security (DHS) and other players.
This report considers and prioritizes potential technical costreduction pathways for axialflow turbines designed for tidal, river, and ocean current resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were utilized to understand current cost drivers and develop a list of potential costreduction pathways: a literature review of technical work related to axialflow turbines, the U.S. Department of Energy Reference Model effort, and informal webinars and other targeted interactions with industry developers. Data from these various information sources were aggregated and prioritized with respect to potential impact on the lifetime levelized cost of energy. The four most promising costreduction pathways include structural design optimization; improved deployment, maintenance, and recovery; system simplicity and reliability; and array optimization.
This report compared data taken on the Modular Bremsstrahlung Simulator using copper jacketed (cujac) cables with calculations using the RHSD-RA Cable SGEMP analysis tool. The tool relies on CEPXS/ONBFP to perform radiation transport in a series of 1D slices through the cable, and then uses a Green function technique to evaluate the expected current drive on the center conductor. The data were obtained in 2003 as part of a Cabana verification and validation experiment using 1-D geometries, but were not evaluated until now. The agreement between data and model is not adequate unless gaps between the dielectric and outer conductor (ground) are assumed, and these gaps are large compared with what is believed to be in the actual cable.
This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users' Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users' Guide.
The formation, transport and segregation of components in nuclear fuels fundamentally control their behavior, performance, longevity and safety. Most nuclear fuels enter service with a uniform composition consisting of a single phase with two or three components. Fission products form introducing more components. The segregation and transport of the components is complicated by the underlying microstructure consisting of grains, pores, bubbles and more, which is evolving during service. As they evolve, components and microstructural features interact such that composition affects microstructure and vice versa. The ability to predict compositional and microstructural evolution in 3D as a function of burn-up would greatly improve the ability to design safe, high burn-up nuclear fuels. We present a model that combines elements of Potts Monte Carlo, MC, and the phase-field model to treat coupled microstructural- compositional evolution. The evolution process demonstrated is grain growth and diffusion in a two-phase system. The hybrid model uses an equation of state, EOS, based on the microstructural state and composition. The microstructural portion uses the traditional MC EOS and the compositional portion uses the phase-field EOS: (Formula Presented) Ev is the bulk free energy of each site i and J is the neighbor interaction energy between neighboring sites i and j. The last term is the compositional interfacial energy as defined in the traditional phase-field model. The coupled microstructure-composition fields evolve by minimizing the free energy in a path dependent manner. An application of this modeling framework demonstrates the expected microstructural and phase coarsening, which is controlled by long-range diffusion.
Single crystals of Cs2NaGdBr6 with different Ce+3 activator concentrations were grown by a two-zone Bridgman method. This new compound belongs to a large elpasolite halide (A2BLnX6) family. Many of these elpasolite compounds have shown high luminosity, good energy resolution and excellent proportionality in comparison to traditional scintillators such as CsI and NaI; therefore, they are particularly attractive for gamma-ray spectroscopy applications. This study investigated the scintillator properties of Cs2NaGdBr6:Ce+3 crystals as a new material for radiation detection. Special focus has been placed on the effects of activator concentration (0 to 50 mol.%) on the photoluminescence responses. Results of structural refinement, photoluminescence, radioluminescence, lifetime and proportionality measurements for this new compound are reported.
A redox flow battery utilizing two, three-electron polyoxometalate redox couples (SiVV3WVI9O 407-/SiVIV3WVI 9O4010- and SiVIV3W VI9O4010-/SiVIV 3WV3WVI6O 4013-) was investigated for use in stationary storage in either aqueous or non-aqueous conditions. The aqueous battery had coulombic efficiencies greater than 95% with relatively low capacity fading over 100 cycles. Infrared studies showed there was no decomposition of the compound under these conditions. The non-aqueous analog had a higher operating voltage but at the expense of coulombic efficiency. The spontaneous formation of these clusters by self-assembly facilitates recovery of the battery after being subjected to reversed polarity. Polyoxometalates offer a new approach to stationary storage materials because they are capable of undergoing multi-electron reactions and are stable over a wide range of pH values and temperatures.
Finite element analysis of transient acoustic phenomena on unbounded exterior domains is very common in engineering analysis. In these problems there is a common need to compute the acoustic pressure at points outside of the acoustic mesh, since meshing to points of interest is impractical in many scenarios. In aeroacoustic calculations, for example, the acoustic pressure may be required at tens or hundreds of meters from the structure. In these cases, a method is needed for post-processing the acoustic results to compute the response at far-field points. In this paper, we compare two methods for computing far-field acoustic pressures, one derived directly from the infinite element solution, and the other from the transient version of the Kirchhoff integral. Here, we show that the infinite element approach alleviates the large storage requirements that are typical of Kirchhoff integral and related procedures, and also does not suffer from loss of accuracy that is an inherent part of computing numerical derivatives in the Kirchhoff integral. In order to further speed up and streamline the process of computing the acoustic response at points outside of the mesh, we also address the nonlinear iterative procedure needed for locating parametric coordinates within the host infinite element of far-field points, the parallelization of the overall process, linear solver requirements, and system stability considerations.
Four types of heat flux gages (Gardon, Schmidt-Boelter, Directional Flame Temperature, and High Temperature Heat Flux Sensor) were assessed and compared under flux conditions ranging between 100-1000 kW/m2, such as those seen in hydrocarbon fire or propellant fire conditions. Short duration step and pulse boundary conditions were imposed using a six-panel cylindrical array of high-temperature tungsten lamps. Overall, agreement between all gages was acceptable for the pulse tests and also for the step tests. However, repeated tests with the HTHFS with relatively long durations at temperatures approaching 1000ÀC showed a substantial decrease (10-25%) in heat flux subsequent to the initial test, likely due to the mounting technique. New HTHFS gages have been ordered to allow additional tests to determine the cause of the flux reduction.
There are numerous scenarios where critical systems could be subject to penetration by projectiles or fixed objects (e.g., collision, natural disaster, act of terrorism, etc.). It is desired to use computational models to examine these scenarios and make risk-informed decisions; however, modeling of material failure is an active area of research, and new models must be validated with experimental data. The purpose of this report is to document the experimental work performed from FY07 through FY08 on the Campaign Six Plate Puncture project. The goal of this project was to acquire experimental data on the puncture and penetration of metal plates for use in model validation. Of particular interest is the PLH failure model also known as the multilinear line segment model. A significant amount of data that will be useful for the verification and validation of computational models of ductile failure were collected during this project were collected and documented herein; however, much more work remains to be performed, collecting additional experimental data that will further the task of model verification.
HERMES III and Z are two flagship accelerators of Sandias pulsed-power program developed to generate intense ɤ-ray fields for the study of nuclear radiation effects, and to explore high energy-density physics (including the production of intense x-ray fields for Inertia Confinement Fusion [ICF]), respectively. A diode at the exit of HERMES III converts its 20-MeV electron beam into ɤ-rays. In contrast, at the center of Z, a z-pinch is used to convert its 20-MA current into an intense burst of x-rays. Here the history of how the HERMES III diode emerged from theoretical considerations to actual hardware is discussed. Next, the reverse process of how the experimental discovery of wire-array stabilization in a z-pinch, led to a better theory of wire-array implosions and its application to one of the ICF concepts on Z--the DH (Dynamic Hohlraum) is reviewed. Lastly, the report concludes with how the unexpected axial radiation asymmetry measured in the DH is understood. The first discussion illustrates the evolution of physics from theory-to-observation-to-refinement. The second two illustrate the reverse process of observation-to-theory-to-refinement. The histories are discussed through the vehicle of my research at Sandia, illustrating the unique environment Sandia provides for personal growth and development into a scientific leader.
A basic structural concept of the blade design that is associated with the frequently utilized %E2%80%9CNREL offshore 5-MW baseline wind turbine%E2%80%9D is needed for studies involving blade structural design and blade structural design tools. The blade structural design documented in this report represents a concept that meets basic design criteria set forth by IEC standards for the onshore turbine. The design documented in this report is not a fully vetted blade design which is ready for manufacture. The intent of the structural concept described by this report is to provide a good starting point for more detailed and targeted investigations such as blade design optimization, blade design tool verification, blade materials and structures investigations, and blade design standards evaluation. This report documents the information used to create the current model as well as the analyses used to verify that the blade structural performance meets reasonable blade design criteria.
This report documents a three-year to develop technology that enables mobile robots to perform autonomous assembly tasks in unstructured outdoor environments. This is a multi-tier problem that requires an integration of a large number of different software technologies including: command and control, estimation and localization, distributed communications, object recognition, pose estimation, real-time scanning, and scene interpretation. Although ultimately unsuccessful in achieving a target brick stacking task autonomously, numerous important component technologies were nevertheless developed. Such technologies include: a patent-pending polygon snake algorithm for robust feature tracking, a color grid algorithm for uniquely identification and calibration, a command and control framework for abstracting robot commands, a scanning capability that utilizes a compact robot portable scanner, and more. This report describes this project and these developed technologies.
Experimental measurements of elementary reaction rate coefficients and product branching ratios are essential to our understanding of many fundamentally important processes in Combustion Chemistry. However, such measurements are often impossible because of a lack of adequate detection techniques. Some of the largest gaps in our knowledge concern some of the most important radical species, because their short lifetimes and low steady-state concentrations make them particularly difficult to detect. To address this challenge, we propose a novel general detection method for gas-phase chemical kinetics: time-resolved broadband cavity-enhanced absorption spectroscopy (TR-BB-CEAS). This all-optical, non-intrusive, multiplexed method enables sensitive direct probing of transient reaction intermediates in a simple, inexpensive, and robust experimental package.
Completion of the CASL L3 milestone THM.CFD.P6.03 provides a tabular material properties capability to the Hydra code. A tabular interpolation package used in Sandia codes was modified to support the needs of multi-phase solvers in Hydra. Use of the interface is described. The package was released to Hydra under a government use license. A dummy physics was created in Hydra to prototype use of the interpolation routines. Finally, a test using the dummy physics verifies the correct behavior of the interpolation for a test water table. 3
The Richtmyer-Meshkov (RM) instability results when a shock wave crosses a rippled interface between two different materials. The shock deposited vorticity causes the ripples to grow into long spikes. Ultimately this process encourages mixing in many warm dense matter and plasma flows of interest. However, generating pure RM instabilities from initially solid targets is difficult because longlived, steady shocks are required. As a result only a few relevant experiments exist, and current theoretical understanding is limited. Here we propose using a flyer-plate driven target to generate RM instabilities with the Z machine. The target consists of a Be impact layer with sinusoidal perturbations and is followed by a low-density carbon foam. Simulation results show that the RM instability grows for 60 ns before release waves reach the perturbation. This long drive time makes Z uniquely suited for generating the high-quality data that is needed by the community.
Operations and maintenance costs for offshore wind plants are significantly higher than the current costs for land-based (onshore) wind plants. One way to reduce these costs would be to implement a structural health and prognostic management (SHPM) system as part of a condition based maintenance paradigm with smart load management and utilize a state-based cost model to assess the economics associated with use of the SHPM system. To facilitate the development of such a system a multi-scale modeling approach developed in prior work is used to identify how the underlying physics of the system are affected by the presence of damage and faults, and how these changes manifest themselves in the operational response of a full turbine. This methodology was used to investigate two case studies: (1) the effects of rotor imbalance due to pitch error (aerodynamic imbalance) and mass imbalance and (2) disbond of the shear web; both on a 5-MW offshore wind turbine in the present report. Based on simulations of damage in the turbine model, the operational measurements that demonstrated the highest sensitivity to the damage/faults were the blade tip accelerations and local pitching moments for both imbalance and shear web disbond. The initial cost model provided a great deal of insight into the estimated savings in operations and maintenance costs due to the implementation of an effective SHPM system. The integration of the health monitoring information and O&M cost versus damage/fault severity information provides the initial steps to identify processes to reduce operations and maintenance costs for an offshore wind farm while increasing turbine availability, revenue, and overall profit.