A Practical Application of Global Sensitivity Analysis for Stochastic Epidemiology Models in Support of Policy Decisions
Abstract not provided.
Abstract not provided.
Abstract not provided.
PLoS ONE
As social distancing policies and recommendations went into effect in response to COVID-19, people made rapid changes to the places they visit. These changes are clearly seen in mobility data, which records foot traffic using location trackers in cell phones. While mobility data is often used to extract the number of customers that visit a particular business or business type, it is the frequency and duration of concurrent occupancy at those sites that governs transmission. Understanding the way people interact at different locations can help target policies and inform contact tracing and prevention strategies. This paper outlines methods to extract interactions from mobility data and build networks that can be used in epidemiological models. Several measures of interaction are extracted: interactions between people, the cumulative interactions for a single person, and cumulative interactions that occur at particular businesses. Network metrics are computed to identify structural trends which show clear changes based on the timing of stay-at-home orders. Measures of interaction and structural trends in the resulting networks can be used to better understand potential spreading events, the percent of interactions that can be classified as close contacts, and the impact of policy choices to control transmission.
Producing and distributing COVID-19 vaccine during the pandemic is a major logistical challenge requiring careful planning and efficient execution. This report presents information on logistical, policy and technical issues relevant to rapidly fielding a COVID-19 vaccination program. For this study we (a) conducted literature review and subject matter expert elicitation to understand current vaccine manufacturing and distribution capabilities and vaccine allocation strategies, (b) designed a baseline vaccine distribution strategy and modeling strategy to provide insight into the potential for targeted distribution of limited initial vaccine supplies, and (c) developed parametric interfaces to enable vaccine distribution scenarios to be analyzed in depth with Sandias Adaptive Recovery Model that will allow us evaluate the additional sub- populations and alternative distribution scenarios from a public health benefit and associated economic disruption Principal issues, challenges, and complexities that complicate COVID-19 vaccine delivery identified in our literature and subject matter expert investigation include these items: The United States has not mounted an urgent nationwide vaccination campaign in recent history. The existing global manufacturing and distribution infrastructure are not able to produce enough vaccine for the population immediately. Vaccines, once available will be scarce resources. Prioritization for vaccine allocation will be built on existing distribution networks. Vaccine distribution may not have a universal impact on disease transmission and morbidity because of scarcity, priority population demographics, and underlying disease transmission rates. Considerations for designing a vaccine distribution strategy are discussed. A baseline distribution strategy is designed and tested using the Adaptive Recovery Model, which couples a deterministic compartmental epidemiological model and a stochastic network model. We show the impact of this vaccine distribution strategy on hospitalizations, mortality, and contact tracing requirements. This model can be used to quantitatively evaluate alternative distribution scenarios, guiding policy decisions as vaccine candidates are narrowed down.
This report documents a new approach to designing disease control policies that allocate scarce testing, contact tracing, and vaccination resources to better control community transmission of COVID19 or similar diseases. The Adaptive Recovery Model (ARM) combines a deterministic compartmental disease model with a stochastic network disease propagation model to enable us to simulate COVID-19 community spread through the lens of two complementary modeling motifs. ARM contact networks are derived from cell-phone location data that have been anonymized and interpreted as individual arrivals to specic public locations. Modeling disease spread over these networks allows us to identify locations within communities conducive to rapid disease spread. ARM applies this model- and data-derived abstractions of community transmission to evaluate the effectiveness of disease control measures including targeted social distancing, contact tracing, testing and vaccination. The architecture of ARM provides a unique capacity to help decision makers understand how best to deploy scarce testing, tracing and vaccination resources to minimize disease-spread potential in a community. This document details the novel mathematical formulations underlying ARM, presents a dynamical stability analysis of the deterministic model components, a sensitivity analysis of control parameters and network structure, and summarizes a process for deriving contact networks from cell-phone location data. An example use case steps through applying ARM to evaluate three targeted social distancing policies using Bernalillo County, New Mexico as an exemplar test locale. This step-by-step analysis demonstrates how ARM can be used to measure the relative performance of competing public health policies. Initial scenario tests of ARM shows that ARMs design focus on resource utilization rather than simple incidence prediction can provide decision makers with additional quantitative guidance for managing ongoing public health emergencies and planning future responses.
Individuals infected with SARS-CoV-2, the virus that causes COVID-19, may be infectious between 1-3 days prior to symptom onset. People may delay seeking medical care after symptom development due to multiple determinants of health seeking behavior like availability of testing, accessibility of providers, and ability to pay. Therefore, understanding symptoms in the general public is important to better predict and inform resource management plans and engage in reopening. As the influenza season looms, the ability to differentiate between clinical presentation of COVID-19 and seasonal influenza will also be important to health providers and public health response efforts. This project has developed an algorithm that when used with captured syndromic trends can help provide both differentiation to various influenza-like illnesses (ILI) as well as provide public health decision makers a better understanding regarding spatial and temporal trends. This effort has also developed a web-based tool to allow for the capturing of generalized syndromic trends and provide both spatial and temporal outputs on these trends. This page left blank
This report summarizes the goals and findings of eight research projects conducted under the Computing and Information Sciences (CIS) Research Foundation and related to the COVID- 19 pandemic. The projects were all formulated in response to Sandia's call for proposals for rapid-response research with the potential to have a positive impact on the global health emergency. Six of the projects in the CIS portfolio focused on modeling various facets of disease spread, resource requirements, testing programs, and economic impact. The two remaining projects examined the use of web-crawlers and text analytics to allow rapid identification of articles relevant to specific technical questions, and categorization of the reliability of content. The portfolio has collectively produced methods and findings that are being applied by a range of state, regional, and national entities to support enhanced understanding and prediction of the pandemic's spread and its impacts.
Abstract not provided.
Sandia National Laboratories currently has 27 COVID-related Laboratory Directed Research & Development (LDRD) projects focused on helping the nation during the pandemic. These LDRD projects cross many disciplines including bioscience, computing & information sciences, engineering science, materials science, nanodevices & microsystems, and radiation effects & high energy density science.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.