Publications

19 Results

Search results

Jump to search filters

Diffusion of Designerly Finite Element Analysis

Peterson, Jerrod P.

To address a variety of difficulties surrounding the use of finite element analysis (FEA) in product development at Sandia, this research explored a 'designerly' insertion of FEA into the design-build-test product development cycle. Designerly FEA is characterized by the use of simplified FEA models, designer-friendly FEA software, an FEA analyst embedded in the product design team, relative comparisons of design options, and a deliberate leveraging of routine prototype testing to collect model validation data. Two case study projects were used to explore the impact of this approach on the product development teams' thinking and perceptions of FEA. The case study data was collected using mixed methods and analyzed using a theory-building approach. The results were synthesized into a framework describing how the use of FEA to build confidence in a product design is related to the process by which product development teams gain or lose confidence in FEA itself. The implications may extend to other organizations that desire to increase the impact of simulation technologies in their product development process.

More Details

Computational solution verification and validation applied to a thermal model of a ruggedized instrumentation package

WIT Transactions on Modelling and Simulation

Scott, Sarah N.; Templeton, Jeremy A.; Ruthruff, Joseph R.; Hough, Patricia D.; Peterson, Jerrod P.

This study details a methodology for quantification of errors and uncertainties of a finite element heat transfer model applied to a Ruggedized Instrumentation Package (RIP). The proposed verification and validation (V&V) process includes solution verification to examine errors associated with the code's solution techniques, and model validation to assess the model's predictive capability for quantities of interest. The model was subjected to mesh resolution and numerical parameters sensitivity studies to determine reasonable parameter values and to understand how they change the overall model response and performance criteria. To facilitate quantification of the uncertainty associated with the mesh, automatic meshing and mesh refining/coarsening algorithms were created and implemented on the complex geometry of the RIP. Automated software to vary model inputs was also developed to determine the solution’s sensitivity to numerical and physical parameters. The model was compared with an experiment to demonstrate its accuracy and determine the importance of both modelled and unmodelled physics in quantifying the results' uncertainty. An emphasis is placed on automating the V&V process to enable uncertainty quantification within tight development schedules.

More Details

Computational solution verification applied to a thermal model of a ruggedized instrumentation package

WIT Transactions on Modelling and Simulation

Scott, Sarah N.; Templeton, Jeremy A.; Ruthruff, Joseph R.; Hough, Patricia D.; Peterson, Jerrod P.

This paper details a methodology for quantification of errors and uncertainties of a finite element heat transfer model applied to a Ruggedized Instrumentation Package (RIP). The proposed verification process includes solution verification, which examines the errors associated with the code's solution techniques. The model was subjected to mesh resolution and numerical parameters sensitivity studies to determine reasonable parameter values and to understand how they change the overall model response and performance criteria. To facilitate quantification of the uncertainty associated with the mesh, automatic meshing and mesh refining/coarsening algorithms were created and implemented on the complex geometry of the RIP. Similarly, highly automated software to vary model inputs was also developed for the purpose of assessing the solution's sensitivity to numerical parameters. The model was subjected to mesh resolution and numerical parameters sensitivity studies. This process not only tests the robustness of the numerical parameters, but also allows for the optimization of robustness and numerical error with computation time. Agglomeration of these studies provides a bound for the uncertainty due to numerical error for the model. An emphasis is placed on the automation of solution verification to allow a rigorous look at uncertainty to be performed even within a tight design and development schedule. © 2013 WIT Press.

More Details

Computational solution verification applied to a thermal model of a ruggedized instrumentation package

WIT Transactions on Modelling and Simulation

Scott, S.N.; Templeton, Jeremy A.; Ruthruff, Joseph R.; Hough, Patricia D.; Peterson, Jerrod P.

This paper details a methodology for quantification of errors and uncertainties of a finite element heat transfer model applied to a Ruggedized Instrumentation Package (RIP). The proposed verification process includes solution verification, which examines the errors associated with the code's solution techniques. The model was subjected to mesh resolution and numerical parameters sensitivity studies to determine reasonable parameter values and to understand how they change the overall model response and performance criteria. To facilitate quantification of the uncertainty associated with the mesh, automatic meshing and mesh refining/coarsening algorithms were created and implemented on the complex geometry of the RIP. Similarly, highly automated software to vary model inputs was also developed for the purpose of assessing the solution's sensitivity to numerical parameters. The model was subjected to mesh resolution and numerical parameters sensitivity studies. This process not only tests the robustness of the numerical parameters, but also allows for the optimization of robustness and numerical error with computation time. Agglomeration of these studies provides a bound for the uncertainty due to numerical error for the model. An emphasis is placed on the automation of solution verification to allow a rigorous look at uncertainty to be performed even within a tight design and development schedule. © 2013 WIT Press.

More Details
19 Results
19 Results