Publications

9 Results

Search results

Jump to search filters

Multi-Window Classical Least Squares Multivariate Calibration Methods for Quantitative ICP-AES Analyses

Applied Spectroscopy

Haaland, David M.; Chambers, William B.; Keenan, Michael R.; Melgaard, David K.

The advent of inductively coupled plasma-atomic emission spectrometers (ICP-AES) equipped with charge-coupled-device (CCD) detector arrays allows the application of multivariate calibration methods to the quantitative analysis of spectral data. We have applied classical least squares (CLS) methods to the analysis of a variety of samples containing up to 12 elements plus an internal standard. The elements included in the calibration models were Ag, Al, As, Au, Cd, Cr, Cu, Fe, Ni, Pb, Pd, and Se. By performing the CLS analysis separately in each of 46 spectral windows and by pooling the CLS concentration results for each element in all windows in a statistically efficient manner, we have been able to significantly improve the accuracy and precision of the ICP-AES analyses relative to the univariate and single-window multivariate methods supplied with the spectrometer. This new multi-window CLS (MWCLS) approach simplifies the analyses by providing a single concentration determination for each element from all spectral windows. Thus, the analyst does not have to perform the tedious task of reviewing the results from each window in an attempt to decide the correct value among discrepant analyses in one or more windows for each element. Furthermore, it is not necessary to construct a spectral correction model for each window prior to calibration and analysis: When one or more interfering elements was present, the new MWCLS method was able to reduce prediction errors for a selected analyte by more than 2 orders of magnitude compared to the worst case single-window multivariate and univariate predictions. The MWCLS detection limits in the presence of multiple interferences are 15 rig/g (i.e., 15 ppb) or better for each element. In addition, errors with the new method are only slightly inflated when only a single target element is included in the calibration (i.e., knowledge of all other elements is excluded during calibration). The MWCLS method is found to be vastly superior to partial least squares (PLS) in this case of limited numbers of calibration samples.

More Details

Chemical sensing system for classification of mine-like objects by explosives detection

Chambers, William B.

Sandia National Laboratories has conducted research in chemical sensing and analysis of explosives for many years. Recently, that experience has been directed towards detecting mines and unexploded ordnance (UXO) by sensing the low-level explosive signatures associated with these objects. The authors focus has been on the classification of UXO in shallow water and anti-personnel/anti tank mines on land. The objective of this work is to develop a field portable chemical sensing system which can be used to examine mine-like objects (MLO) to determine whether there are explosive molecules associated with the MLO. Two sampling subsystems have been designed, one for water collection and one for soil/vapor sampling. The water sampler utilizes a flow-through chemical adsorbent canister to extract and concentrate the explosive molecules. Explosive molecules are thermally desorbed from the concentrator and trapped in a focusing stage for rapid desorption into an ion-mobility spectrometer (IMS). The authors describe a prototype system which consists of a sampler, concentrator-focuser, and detector. The soil sampler employs a light-weight probe for extracting and concentrating explosive vapor from the soil in the vicinity of an MLO. The chemical sensing system is capable of sub-part-per-billion detection of TNT and related explosive munition compounds. They present the results of field and laboratory tests on buried landmines which demonstrate their ability to detect the explosive signatures associated with these objects.

More Details

Disposal of SNL-designed electronics assemblies associated with the nuclear weapons program: Challenges and progress

Chambers, William B.

One of the common waste streams generated throughout the nuclear weapon complex is ``hardware`` originating from the nuclear weapons program. The activities associated with this hardware at Sandia National Laboratories (SNL) include design and development, environmental testing, reliability and stockpile surveillance testing, and military liaison training. SNL-designed electronic assemblies include radars, arming/fusing/firing systems, power sources, and use-control and safety systems. Waste stream characterization using process knowledge is difficult due to the age of some components and lack of design information oriented towards hazardous constituent identification. Chemical analysis methods such as the Toxicity Characteristic Leaching Procedure (TCLP) are complicated by the inhomogeneous character of these components and the fact that many assemblies have aluminum or stainless steel cases, with the electronics encapsulated in a foam or epoxy matrix. In addition, some components may contain explosives, radioactive materials, toxic substances (PCBs, asbestos), and other regulated or personnel hazards which must be identified prior to handling and disposal. In spite of the above difficulties, we have succeeded in characterizing a limited number of weapon components using a combination of process knowledge and chemical analysis. For these components, we have shown that if the material is regulated as RCRA hazardous waste, it is because the waste exhibits one or more hazardous characteristics; primarily reactivity and/or toxicity (Pb, Cd).

More Details

BA85: A Bence-Albee oxide analysis routine with mineral code capabilities

Chambers, William B.

BA85 is a routine for the quantitative reduction of x-ray data collected from oxide samples in an electron microprobe. BA85 is based on the correction procedures developed by Bence and Albee and is coded in Flextran for use with the TASK8 microprobe operating system. Features include stoichiometry and statistical calculations, the use of a 90 - oxide A-factor matrix which contains all of the common valence states for such elements as Fe and Cr, the ability to analyze up to 45 oxides, and the ability to create and use mineral codes which permit associating up to 15 oxides with three letter mnemonic codes. Entering a mineral code results in the analysis of the oxides associated with it and the performance of one of 21 endmember calculations. 13 refs., 2 figs., 3 tabs.

More Details

Plotting and summary routines for TASK8

Chambers, William B.

Plotting and summary routines available for the TASK8 microprobe operating system are able to accept both spectral and quantitative data. All of the routines are able to be run as subroutines from within the TASK8 program or as stand alone programs. Additionally, the spectral plotting routine can be run from within a modified version of SQ. The quantitative routines currently in use with TASK8. Quantitative output can be sent by the summary program to a serial port that is connected to a VAX or PC in addition to printing it. The plotting codes have been written so that either a Tracor Northern TN2000 or a TN5xxx analyzer may be used with either a Hewlett Packard HP7221 series or a HP7470/HP7550 series plotter. The plotting routine for spectra incorporates a user definable usual was'' option to simplify most input procedures. The quantitative plotting routine offers numerous options including scale expansion, smoothing, auto-labeling, special symbols, and multiple pens. 5 refs., 5 figs.

More Details

Quantitative analysis procedures for Task 8

Chambers, William B.

Quantitative analysis routines based on the Bence-Albee, the ZAF, and the {Phi}({rho}Z) techniques are available for the TASK8 microprobe operating system. All of the routines are able to be run from within TASK8 or as stand alone programs. For quick analyses, energy dispersive x-ray data can be collected and processed by running the Tracor standardless quantitative (SQ) routine from within TASK8. For normal analyses, data are collected via the wavelength spectrometers. The procedures and routines described in this document permit the interactive collection and processing of data via joystick control or the automatic collection and processing of data from up to seven line traces or an essentially unlimited number of preselected points. 7 refs., 5 figs., 1 tab.

More Details
9 Results
9 Results