The goal of Phase 3 the OSD ATL Contingency Contractor Optimization (CCO) project is to create an engineering prototype of a tool for the contingency contractor element of total force planning during the Support for Strategic Analysis (SSA). An optimization model was developed to determine the optimal mix of military, Department of Defense (DoD) civilians, and contractors that accomplishes a set of user defined mission requirements at the lowest possible cost while honoring resource limitations and manpower use rules. An additional feature allows the model to understand the variability of the Total Force Mix when there is uncertainty in mission requirements.
The Trilinos Project is an effort to facilitate the design, development, integration and ongoing support of mathematical software libraries within an object-oriented framework. It is intended for large-scale, complex multiphysics engineering and scientific applications [2, 4, 3]. Epetra is one of its basic packages. It provides serial and parallel linear algebra capabilities. Before Trilinos version 11.0, released in 2012, Epetra used the C++ int data-type for storing global and local indices for degrees of freedom (DOFs). Since int is typically 32-bit, this limited the largest problem size to be smaller than approximately two billion DOFs. This was true even if a distributed memory machine could handle larger problems. We have added optional support for C++ long long data-type, which is at least 64-bit wide, for global indices. To save memory, maintain the speed of memory-bound operations, and reduce further changes to the code, the local indices are still 32-bit. We document the changes required to achieve this feature and how the new functionality can be used. We also report on the lessons learned in modifying a mature and popular package from various perspectives design goals, backward compatibility, engineering decisions, C++ language features, effects on existing users and other packages, and build integration.
A selective literature review was conducted to assess whether currently available accelerated aging and original qualification data could be used to establish operational margins for the continued use of cable insulation and jacketing materials in nuclear power plant environments. The materials are subject to chemical and physical degradation under extended radiationthermal- oxidative conditions. Of particular interest were the circumstances under which existing aging data could be used to predict whether aged materials should pass loss of coolant accident (LOCA) performance requirements. Original LOCA qualification testing usually involved accelerated aging simulations of the 40-year expected ambient aging conditions followed by a LOCA simulation. The accelerated aging simulations were conducted under rapid accelerated aging conditions that did not account for many of the known limitations in accelerated polymer aging and therefore did not correctly simulate actual aging conditions. These highly accelerated aging conditions resulted in insulation materials with mostly inert aging processes as well as jacket materials where oxidative damage dropped quickly away from the air-exposed outside jacket surface. Therefore, for most LOCA performance predictions, testing appears to have relied upon heterogeneous aging behavior with oxidation often limited to the exterior of the cable cross-section a situation which is not comparable with the nearly homogenous oxidative aging that will occur over decades under low dose rate and low temperature plant conditions. The historical aging conditions are therefore insufficient to determine with reasonable confidence the remaining operational margins for these materials. This does not necessarily imply that the existing 40-year-old materials would fail if LOCA conditions occurred, but rather that unambiguous statements about the current aging state and anticipated LOCA performance cannot be provided based on original qualification testing data alone. The non-availability of conclusive predictions for the aging conditions of 40-year-old cables implies that the same levels of uncertainty will remain for any re-qualification or extended operation of these cables. The highly variable aging behavior of the range of materials employed also implies that simple, standardized aging tests are not sufficient to provide the required aging data and performance predictions for all materials. It is recommended that focused studies be conducted that would yield the material aging parameters needed to predict aging behaviors under low dose, low temperature plant equivalent conditions and that appropriately aged specimens be prepared that would mimic oxidatively-aged 40- to 60- year-old materials for confirmatory LOCA performance testing. This study concludes that it is not sufficient to expose materials to rapid, high radiation and high temperature levels with subsequent LOCA qualification testing in order to predictively quantify safety margins of existing infrastructure with regard to LOCA performance. We need to better understand how cable jacketing and insulation materials have degraded over decades of power plant operation and how this aging history relates to service life prediction and the performance of existing equipment to withstand a LOCA situation.
The Trilinos Project is an effort to develop algorithms and enabling technologies within an object-oriented software framework for the solution of large-scale, complex multi-physics engineering and scientific problems. A new software capability is introduced into Trilinos as a package. A Trilinos package is an integral unit and, although there are exceptions such as utility packages, each package is typically developed by a small team of experts in a particular algorithms area such as algebraic preconditioners, nonlinear solvers, etc. The Trilinos Developers SQE Guide is a resource for Trilinos package developers who are working under Advanced Simulation and Computing (ASC) and are therefore subject to the ASC Software Quality Engineering Practices as described in the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan: ASC Software Quality Engineering Practices Version 3.0 document. The Trilinos Developer Policies webpage contains a lot of detailed information that is essential for all Trilinos developers. The Trilinos Software Lifecycle Model defines the default lifecycle model for Trilinos packages and provides a context for many of the practices listed in this document.
With renewed interest in disposal of heat-generating waste in bedded or domal salt formations, scoping analyses were conducted to estimate rates of waste package vertical movement. Vertical movement is found to result from thermal expansion, from upward creep or heave of the near-field salt, and from downward buoyant forces on the waste package. A two-pronged analysis approach was used, with thermal-mechanical creep modeling, and coupled thermal-viscous flow modeling. The thermal-mechanical approach used well-studied salt constitutive models, while the thermal-viscous approach represented the salt as a highly viscous fluid. The Sierra suite of coupled simulation codes was used for both approaches. The waste package in all simulations was a right-circular cylinder with the density of steel, in horizontal orientation. A time-decaying heat generation function was used to represent commercial spent fuel with typical burnup and 50-year age. Results from the thermal-mechanical base case showed approximately 27 cm initial uplift of the package, followed by gradual relaxation closely following the calculated temperature history. A similar displacement history was obtained with the package density set equal to that of salt. The slight difference in these runs is attributable to buoyant displacement (sinking) and is on the order of 1 mm in 2,000 years. Without heat generation the displacement stabilizes at a fraction of millimeter after a few hundred years. Results from thermal-viscous model were similar, except that the rate of sinking was constant after cooldown, at approximately 0.15 mm per 1,000 yr. In summary, all calculations showed vertical movement on the order of 1 mm or less in 2,000 yr, including calculations using well-established constitutive models for temperature-dependent salt deformation. Based on this finding, displacement of waste packages in a salt repository is not a significant repository performance issue.
A comprehensive test program to evaluate nonmetallic materials use in the Hanford tank farms is described in detail. This test program determines the effects of simultaneous multiple stressors at reasonable conditions on in-service configuration components by engineering performance testing.
This report describes the development of a new detection method for electrostatic discharge (ESD) testing of explosives, using a single-lens reflex (SLR) digital camera and a 200-mm macro lens. This method has demonstrated several distinct advantages to other current ESD detection methods, including the creation of a permanent record, an enlarged image for real-time viewing as well as extended periods of review, and ability to combine with most other Go/No-Go sensors. This report includes details of the method, including camera settings and position, and results with well-characterized explosives PETN and RDX, and two ESD-sensitive aluminum powders.
We report on the use and design of a portable, extensible performance data collection tool motivated by modeling needs of the high performance computing systems co-design com- munity. The lightweight performance data collectors with Eiger support is intended to be a tailorable tool, not a shrink-wrapped library product, as pro ling needs vary widely. A single code markup scheme is reported which, based on compilation ags, can send perfor- mance data from parallel applications to CSV les, to an Eiger mysql database, or (in a non-database environment) to at les for later merging and loading on a host with mysql available. The tool supports C, C++, and Fortran applications.
This report examines the lessons learned process by a review of the literature in a variety of disciplines, and is intended as a guidepost for organizations that are considering the implementation of their own closed-loop learning process. Lessons learned definitions are provided within the broader context of knowledge management and the framework of a learning organization. Shortcomings of existing practices are summarized in an attempt to identify common pitfalls that can be avoided by organizations with fledgling experiences of their own. Lessons learned are then examined through a dual construct of both process and mechanism, with emphasis on integrating into organizational processes and promoting lesson reuse through data attributes that contribute toward changed behaviors. The report concludes with recommended steps for follow-on efforts.
The current wave of small modular reactor (SMR) designs all have the goal of reducing the cost of management and operations. By optimizing the system, the goal is to make these power plants safer, cheaper to operate and maintain, and more secure. In particular, the reduction in plant staffing can result in significant cost savings. The introduction of advanced reactor designs and increased use of advanced automation technologies in existing nuclear power plants will likely change the roles, responsibilities, composition, and size of the crews required to control plant operations. Similarly, certain security staffing requirements for traditional operational nuclear power plants may not be appropriate or necessary for SMRs due to the simpler, safer and more automated design characteristics of SMRs. As a first step in a process to identify where regulatory requirements may be met with reduced staffing and therefore lower cost, this report identifies the regulatory requirements and associated guidance utilized in the licensing of existing reactors. The potential applicability of these regulations to advanced SMR designs is identified taking into account the unique features of these types of reactors.
We performed measurements of the prompt radiation induced conductivity (RIC) in thin samples of Teflon (PTFE) at the Little Mountain Medusa LINAC facility in Ogden, UT. Three mil (76.2 microns) samples were irradiated with a 0.5 %CE%BCs pulse of 20 MeV electrons, yielding dose rates of 1E9 to 1E11 rad/s. We applied variable potentials up to 2 kV across the samples and measured the prompt conduction current. Details of the experimental apparatus and analysis are reported in this report on prompt RIC in Teflon.
In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, the gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.
Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the Department of Energy’s National Nuclear Security Administration (NNSA). The NNSA Sandia Field Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2012 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2011d). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2012. General site and environmental program information is also included.
The objective of this work is to develop a model for total dose effects in bipolar junction transistors for use in circuit simulation. The components of the model are an electrical model of device performance that includes the effects of trapped charge on device behavior, and a model that calculates the trapped charge densities in a specific device structure as a function of radiation dose and dose rate. Simulations based on this model are found to agree well with measurements on a number of devices for which data are available.
Increased HPC capability comes with increased complexity, part counts, and fault occurrences. In- creasing the resilience of systems and applications to faults is a critical requirement facing the viability of exascale systems, as the overhead of traditional checkpoint/restart is projected to outweigh its bene ts due to fault rates outpacing I/O bandwidths. As faults occur and propagate throughout hardware and software layers, pervasive noti cation and handling mechanisms are necessary. This report describes an initial investigation of fault types and programming interfaces to mitigate them. Proof-of-concept APIs are presented for the frequent and important cases of memory errors and node failures, and a strategy proposed for lesystem failures. These involve changes to the operating system, runtime, I/O library, and application layers. While a single API for fault handling among hardware and OS and application system-wide remains elusive, the e ort increased our understanding of both the mountainous challenges and the promising trailheads. 3