Publications

14 Results

Search results

Jump to search filters

Structural Changes of Self-Assembled Leas Sulfide, Polystyrene Thin Films Under Extreme Pressure Using in-situ High Pressure Small Angle X-ray Scattering

Pepple, Mark A.; Hill, Joshua

Polymer nanocomposite films consisting of polystyrene (PS) and lead sulfide (PbS) quantum dots, as well as pure PbS quantum dot films were synthesized for the purpose of investigating the pressure directed assembly (PDA) of the nanomaterials and the interactions of polystyrene and the quantum dot superlattice under pressure. Samples were compressed using a diamond anvil cell (DAC) to pressures greater than 15 GPa and studied using x-ray synchrotron radiation in order to show the changes in the d-spacing of the superlattice with respect to pressure. Absorption characteristics were investigated with ultraviolet visible spectroscopy (UV/Vis), while structure and long range ordering of the lattice were studied using small angle x-ray scattering (SAXS) as well as grazing incidence small angle scattering (GISAXS). Particle size was examined with transmission electron microscopy (TEM). These inquiries into size, structure, and interactions were performed in order to gain a baseline understanding of the interplay between nanoparticles and a simple polymer in a composite system and how the composite systems can be composed in future experiments.

More Details

Chemical supply chain modeling for analysis of homeland security events

Computers and Chemical Engineering

Ehlen, Mark E.; Sun, Amy C.; Pepple, Mark A.; Eidson, Eric D.; Jones, Brian S.

The potential impacts of man-made and natural disasters on chemical plants, complexes, and supply chains are of great importance to homeland security. To be able to estimate these impacts, we developed an agent-based chemical supply chain model that includes: chemical plants with enterprise operations such as purchasing, production scheduling, and inventories; merchant chemical markets, and multi-modal chemical shipments. Large-scale simulations of chemical-plant activities and supply chain interactions, running on desktop computers, are used to estimate the scope and duration of disruptive-event impacts, and overall system resilience, based on the extent to which individual chemical plants can adjust their internal operations (e.g., production mixes and levels) versus their external interactions (market sales and purchases, and transportation routes and modes). To illustrate how the model estimates the impacts of a hurricane disruption, a simple example model centered on 1,4-butanediol is presented. © 2013 Elsevier Ltd.

More Details

Agent-based chemical supply chain models assessing dynamic disruptions

Computing and Systems Technology Division - Core Programming Topic at the 2011 AIChE Annual Meeting

Pepple, Mark A.; Sun, Amy C.; Ehlen, Mark E.; Jones, Brian S.

The chemical industry is one of the largest industries in the United States and a vital contributor to global chemical supply chains. The U.S. Department of Homeland Security (DHS) Science and Technology Directorate has tasked Sandia National Laboratories (Sandia) with developing an analytical capability to assess interdependencies and complexities of the nation's critical infrastructures on and with the chemical sector. This work is being performed to expand the infrastructure analytical capabilities of the National Infrastructure Simulation and Analysis Center (NISAC). To address this need, Sandia has focused on development of an agent-based methodology towards simulating the domestic chemical supply chain and determining economic impacts resulting from large-scale disruptions to the chemical sector. Modeling the chemical supply chain is unique because the flow of goods and services are guided by process thermodynamics and reaction kinetics. Sandia has integrated an agent-based microeconomic simulation tool N-ABLETM with various chemical industry datasets to abstract the chemical supply chain behavior. An enterprise design within N-ABLETM consists of a collection of firms within a supply chain network; each firm interacts with others through chemical reactions, markets, and physical infrastructure. The supply and demand within each simulated network must be consistent with respect to mass balances of every chemical within the network. Production decisions at every time step are a set of constrained linear program (LP) solutions that minimize the difference between desired and actual outputs. We illustrate the methodology with examples of modeled petrochemical supply chains under an earthquake event. The supply chain impacts of upstream and downstream chemicals associated with organic intermediates after a short-term shutdown in the affected area are discussed.

More Details
14 Results
14 Results