Publications

23 Results

Search results

Jump to search filters

Design-stage QRA for indoor vehicular hydrogen fueling systems

Safety, Reliability and Risk Analysis: Beyond the Horizon - Proceedings of the European Safety and Reliability Conference, ESREL 2013

Groth, Katrina G.; LaChance, Jeffrey L.; Harris, Aaron P.

In recent years, high pressure gaseous hydrogen has become increasingly popular as a vehicle fuel. The National Fire Protection Association (NFPA) is one of several organizations developing codes and standards to ensure the safety of the vehicular hydrogen infrastructure. As part of code development activities, NFPA is exploring the use of Quantitative Risk Assessment (QRA) to help provide a technical basis for specific requirements in the Hydrogen Technologies Code (NFPA 2). The authors conducted the QRA activity to 1) provide screening-level insights into the fatality risk from code-compliant, indoor hydrogen fueling systems for NFPA 2 Chapter 10 (Gaseous Hydrogen Vehicle Fueling Facilities) and 2) identify gaps in QRA that must be resolved to enable more detailed, robust QRA analyses. This paper documents the results of this early-stage QRA activity and suggests several QRA improvements that would enable more widespread use of QRA for vehicular hydrogen applications. © 2014 Taylor & Francis Group, London.

More Details

Hydrogen quantitative risk assessment workshop proceedings

Harris, Aaron P.; Groth, Katrina G.

The Quantitative Risk Assessment (QRA) Toolkit Introduction Workshop was held at Energetics on June 11-12. The workshop was co-hosted by Sandia National Laboratories (Sandia) and HySafe, the International Association for Hydrogen Safety. The objective of the workshop was twofold: (1) Present a hydrogen-specific methodology and toolkit (currently under development) for conducting QRA to support the development of codes and standards and safety assessments of hydrogen-fueled vehicles and fueling stations, and (2) Obtain feedback on the needs of early-stage users (hydrogen as well as potential leveraging for Compressed Natural Gas [CNG], and Liquefied Natural Gas [LNG]) and set priorities for %E2%80%9CVersion 1%E2%80%9D of the toolkit in the context of the commercial evolution of hydrogen fuel cell electric vehicles (FCEV). The workshop consisted of an introduction and three technical sessions: Risk Informed Development and Approach; CNG/LNG Applications; and Introduction of a Hydrogen Specific QRA Toolkit.

More Details

Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility

Pratt, Joseph W.; Harris, Aaron P.

A barge-mounted hydrogen-fueled proton exchange membrane (PEM) fuel cell system has the potential to reduce emissions and fossil fuel use of maritime vessels in and around ports. This study determines the technical feasibility of this concept and examines specific options on the U.S. West Coast for deployment practicality and potential for commercialization.The conceptual design of the system is found to be straightforward and technically feasible in several configurations corresponding to various power levels and run times.The most technically viable and commercially attractive deployment options were found to be powering container ships at berth at the Port of Tacoma and/or Seattle, powering tugs at anchorage near the Port of Oakland, and powering refrigerated containers on-board Hawaiian inter-island transport barges. Other attractive demonstration options were found at the Port of Seattle, the Suisun Bay Reserve Fleet, the California Maritime Academy, and an excursion vessel on the Ohio River.

More Details

Pressure cycling of steel pressure vessels with gaseous hydrogen

American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP

San Marchi, Christopher W.; Harris, Aaron P.; Yip, Mien Y.; Somerday, Brian P.

Steel pressure vessels are commonly used for the transport of pressurized gases, including gaseous hydrogen. In the majority of cases, these transport cylinders experience relatively few pressure cycles over their lifetime, perhaps as many as 25 per year, and generally significantly less. For fueling applications, as in fuel tanks on hydrogen-powered industrial trucks, the hydrogen fuel systems may experience thousands of cycles over their lifetime. Similarly, it can be anticipated that the use of tube trailers for large-scale distribution of gaseous hydrogen will require lifetimes of thousands of pressure cycles. This study investigates the fatigue life of steel pressure vessels that are similar to transport cylinders by subjecting full-scale vessels to pressure cycles with gaseous hydrogen between nominal pressure of 3 and 44 MPa. In addition to pressure cycling of vessels that are similar to those in service, engineered defects were machined on the inside of several pressure vessels to simulate manufacturing defects and to initiate failure after relatively low number of cycles. Failure was not observed in as-manufactured vessels with more than 55,000 pressure cycles, nor in vessels with relatively small, engineered defects subjected to more than 40,000 cycles. Large engineered defects (with depth greater than 5% of the wall thickness) resulted in failure after 8,000 to 15,000 pressure cycles. Defects machined to depths less than 5% wall thickness did not induce failures. Four pressure vessel failures were observed during the course of this project and, in all cases, failure occurred by leak before burst. The performance of the tested vessels is compared to two design approaches: fracture mechanics design approach and traditional fatigue analysis design approach. The results from this work have been used as the basis for the design rules for Type 1 fuel tanks in the standard entitled "Compressed Hydrogen-Powered Industrial Truck, On-board Fuel Storage and Handling Components (HPIT1)" from CSA America. Copyright © 2012 by ASME.

More Details
23 Results
23 Results