Publications

Results 89401–89600 of 96,771

Search results

Jump to search filters

Ni-Al composite coatings: Diffusion analysis and coating lifetime estimation

Acta Materialia

Susan, D.F.

The interdiffusion of Ni matrix/Al particle composite coatings and nickel substrates was studied using electron probe microanalysis (EPMA) and a one-dimensional diffusion model. The initial coating microstructure was a two-phase mixture of y(Ni) and y{prime}(Ni{sub 3}Al). The coating/substrate assemblies were aged at 800 to 1,100 C for times up to 2,000 hours. It was found that aluminum losses to the substrate are significant at 1,000 C and above. The experimental results for the diffusion of Al into the substrate were compared to model predictions based on a diffusion equation for a finite layer on an infinite substrate. Using combined experimental and model results, the effects of temperature and coating thickness were determined and a rationale was developed for coating lifetime prediction.

More Details

Measurement of temperature distributions in large pool fires with the use of directional flame thermometers

Koski, Jorman A.

Temperatures inside the flame zone of large regulatory pool fires measured during tests of radioactive materials packages vary widely with both time and position. Measurements made with several Directional Flame Thermometers, in which a thermocouple is attached to a thin metal sheet that quickly approaches flame temperatures, have been used to construct fire temperature distributions and cumulative probability distributions. As an aid to computer simulations of these large fires, these distributions are presented. The distributions are constructed by sorting fire temperature data into bins 10 C wide. A typical fire temperature distribution curve has a gradual increase starting at about 600 C, with the number of observations increasing to a peak near 1000 C, followed by an abrupt decrease in frequency, with no temperatures observed above 1200 C.

More Details

Shock certification of replacement subsystems and components in the presence of uncertainty

Dohner, Jeffrey L.; Lauffer, James P.

In this paper a methodology for analytically estimating the response of replacement components in a system subjected to worst-case hostile shocks is presented. This methodology does not require the use of system testing but uses previously compiled shock data and inverse dynamic analysis to estimate component shock response. In the past component shock responses were determined from numerous system tests; however, with limitations on system testing, an alternate methodology for determining component response is required. Such a methodology is discussed. This methodology is mathematically complex in that two inverse problems, and a forward problem, must be solved for a permutation of models representing variabilities in dynamics. Two conclusions were deduced as a result of this work. First, the present methodology produces overly conservative results. Second, the specification of system variability is critical to the prediction of component response.

More Details

Aging analyses of aircraft wire insulation

Gillen, Kenneth T.; Clough, Roger L.; Celina, Mathias C.; Aubert, James H.; Malone, Gerard M.

Over the past two decades, Sandia has developed a variety of specialized analytical techniques for evaluating the long-term aging and stability of cable insulation and other related materials. These techniques have been applied to cable reliability studies involving numerous insulation types and environmental factors. This work has allowed the monitoring of the occurrence and progression of cable material deterioration in application environments, and has provided insights into material degradation mechanisms. It has also allowed development of more reliable lifetime prediction methodologies. As a part of the FAA program for intrusive inspection of aircraft wiring, they are beginning to apply a battery of techniques to assessing the condition of cable specimens removed from retired aircraft. It is anticipated that in a future part of this program, they may employ these techniques in conjunction with accelerated aging methodologies and models that the authros have developed and employed in the past to predict cable lifetimes. The types of materials to be assessed include 5 different wire types: polyimide, PVC/Glass/Nylon, extruded XL-polyalkene/PVDF, Poly-X, and XL-ETFE. This presentation provides a brief overview of the main techniques that will be employed in assessing the state of health of aircraft wire insulation. The discussion will be illustrated with data from their prior cable aging studies, highlighting the methods used and their important conclusions. A few of the techniques that they employ are widely used in aging studies on polymers, but others are unique to Sandia. All of their techniques are non-proprietary, and maybe of interest for use by others in terms of application to aircraft wiring analysis. At the end of this report is a list showing some leading references to papers that have been published in the open literature which provide more detailed information on the analytical techniques for elastomer aging studies. The first step in the investigation of aircraft wiring is to evaluate the applicability of their various techniques to aircraft cables, after which they expect to identify a limited subset of techniques which are appropriate for each of the major aircraft wiring types. The techniques of initial interest in the studies of aging aircraft wire are as follows: optical microscopy; mandrel bend test; tensile test/elongation at break; density measurements; modulus profiling/(spatially-resolved micro-hardness); oxygen induction time/oxygen induction temperature (by differential scanning calorimetry); solvent-swelling/gel fraction; infrared spectroscopy (with chemical derivatization as warranted); chemiluminescence; thermo-oxidative wear-out assessment; The first two techniques are the simplest and quickest to apply; those further down the list tend to be more information rich and in some cases more sensitive, but also generally more specialized and more time consuming to run. Accordingly, the procedure will be to apply the simplest tests for purposes of preliminary screening of large numbers of samples. For any given material type, it can be expected that only a limited number of the other techniques will prove to be useful, and therefore, the more specialized techniques will be used on a limited number of selected samples. Samples of aircraft wiring have begun to be released to the authors in late April; they include in this report some limited and preliminary data on these materials.

More Details

Rapid prototyping of patterned functional nanostructures

Nature

Fan, Hongyou; Lu, Yunfeng; Stump, Aaron; Reed, Scott T.; Baer, Thomas A.; Schunk, Randy; Perez-Luna, Victor; López, Gabriel P.; Brinker, C.J.

Living systems exhibit form and function on multiple length scales and at multiple locations. In order to mimic such natural structures, it is necessary to develop efficient strategies for assembling hierarchical materials. Conventional photolithography, although ubiquitous in the fabrication of microelectronics and microelectromechanical systems, is impractical for defining feature sizes below 0.1 micrometres and poorly suited to pattern chemical functionality. Recently, so-called 'soft' lithographic approaches have been combined with surfactant and particulate templating procedures to create materials with multiple levels of structural order. But the materials thus formed have been limited primarily to oxides with no specific functionality, and the associated processing times have ranged from hours to days. Here, using a self-assembling 'ink', we combine silica-surfactant self-assembly with three rapid printing procedures-pen lithography, ink-jet printing, and dip-coating of patterned self-assembled monolayers-to form functional, hierarchically organized structures in seconds. The rapid-prototyping procedures we describe are simple, employ readily available equipment, and provide a link between computer-aided design and self-assembled nanostructures. We expect that the ability to form arbitrary functional designs on arbitrary surfaces will be of practical importance for directly writing sensor arrays and fluidic or photonic systems.

More Details

Effect of initial seed and number of samples on simple-random and Latin-Hypercube Monte Carlo probabilities (confidence interval considerations)

Romero, Vicente J.

In order to devise an algorithm for autonomously terminating Monte Carlo sampling when sufficiently small and reliable confidence intervals (CI) are achieved on calculated probabilities, the behavior of CI estimators must be characterized. This knowledge is also required in comparing the accuracy of other probability estimation techniques to Monte Carlo results. Based on 100 trials in a hypothesis test, estimated 95% CI from classical approximate CI theory are empirically examined to determine if they behave as true 95% CI over spectrums of probabilities (population proportions) ranging from 0.001 to 0.99 in a test problem. Tests are conducted for population sizes of 500 and 10,000 samples where applicable. Significant differences between true and estimated 95% CI are found to occur at probabilities between 0.1 and 0.9, such that estimated 95% CI can be rejected as not being true 95% CI at less than a 40% chance of incorrect rejection. With regard to Latin Hypercube sampling (LHS), though no general theory has been verified for accurately estimating LHS CI, recent numerical experiments on the test problem have found LHS to be conservatively over an order of magnitude more efficient than SRS for similar sized CI on probabilities ranging between 0.25 and 0.75. The efficiency advantage of LHS vanishes, however, as the probability extremes of 0 and 1 are approached.

More Details

Control of the RF waveform at the chuck of an industrial oxide-etch reactor

Jouranl of Vacuum Science and Technology

Miller, Paul A.

Radio frequency (rf) power is applied to the chuck of a high-density plasma reactor in order to extract ions and to control the energy of the ions used for the fabrication of microelectronic devices. In many cases, the temporal shape of the rf waveform largely determines the shape of the spectrum of those extracted ions, thereby strongly affecting feature evolution. Using auxiliary rf circuits the authors successfully made major changes to the rf potential waveform at the chuck of an Applied Materials 5300 HDP Omega reactor without affecting the normal functioning of the reactor's control systems. This work established the practical feasibility of techniques for modifying the ion energy distribution functions of industrial reactors.

More Details

Minority carrier diffusion, defects, and localization in InGaAsN with 2% nitrogen

Applied Physics Letters

Kurtz, S.R.; Allerman, A.A.; Seager, Carleton H.; Sieg, Robert M.; Jones, E.D.

Electron and hole transport in compensated, InGaAsN ({approx} 2% N) are examined through Hall mobility, photoconductivity, and solar cell photoresponse measurements. Short minority carrier diffusion lengths, photoconductive-response spectra, and doping dependent, thermally activated Hall mobilities reveal a broad distribution of localized states. At this stage of development, lateral carrier transport appears to be limited by large scale (>> mean free path) material inhomogeneities, not a random alloy-induced mobility edge.

More Details

``Cats and Dogs'' disposition at Sandia: Last of the legacy materials

Strong, Warren R.; Jackson, John L.

Over the past 12 months, Sandia National Laboratories, New Mexico (SNL/NM), has successfully conducted an evaluation of its nuclear material holdings. As a result, approximately 46% of these holdings (36% by mass) have been reclassified as no defined use (NDU). Reclassification as NDU allows Sandia to determine the final disposition of a significant percentage of its legacy nuclear material. Disposition will begin some time in mid CY2000. This reclassification and the proposed disposition of the material has resulted in an extensive coordination effort lead by the Nuclear Materials Management Team (NMMT), which includes the nuclear material owners, the Radioactive Waste/Nuclear Material Disposition Department (7135), and DOE Albuquerque Operations Office. The process of identifying and reclassifying the cats and dogs or miscellaneous lots of nuclear material has also presented a number of important lessons learned for other sites in the DOE complex.

More Details

Protective coatings for concrete

Cygan, Randall T.; Brinker, C.J.

The new two-layer protective coating developed for monuments constructed of limestone or marble was applied to highway cement and to tobermorite, a component of cement, and tested in batch dissolution tests. The goal was to determine the suitability of the protective coating in retarding the weathering rate of concrete construction. The two-layer coating consists of an inner layer of aminoethylaminopropylsilane (AEAPS) applied as a 25% solution in methanol and an outer layer of A2** sol-gel. In previous work, this product when applied to calcite powders, had resulted in a lowering of the rate of dissolution by a factor of ten and was shown through molecular modeling to bind strongly to the calcite surface, but not too strongly so as to accelerate dissolution. Batch dissolution tests at 22 C of coated and uncoated tobermorite (1.1 nm phase) and powdered cement from Gibson Blvd. in Albuquerque indicated that the coating exhibits some protective behavior, at least on short time scales. However, the data suggest that the outer layer of sol-gel dissolves in the high-pH environment of the closed system of cement plus water. Calculated binding configuration and energy of AEAPS to the tobermorite surface suggests that AEAPS is well-suited as the inner layer binder for protecting tobermorite.

More Details

Continuum-Based FEM Modeling of Ceramic Powder Compaction Using a Cap-Plasticity Constitutive Model

KONA Journal

Arguello, Jose G.; Fossum, A.F.; Zeuch, David H.; Ewsuk, Kevin G.

Software has been developed and extended to allow finite element (FE) modeling of ceramic powder compaction using a cap-plasticity constitutive model. The underlying, general-purpose FE software can be used to model even the most complex three-dimensional (3D) geometries envisioned. Additionally, specialized software has been developed within this framework to address a general subclass of axisymmetric compacts that are common in industry. The expertise required to build the input deck, run the FE code, and post-process the results for this subclass of compacts is embedded within the specialized software. The user simply responds to a series of prompts, evaluates the quality of the FE mesh that is generated, and analyzes the graphical results that are produced. The specialized software allows users with little or no FE expertise to benefit from the tremendous power and insight that FE analysis can bring to the design cycle. The more general underlying software provides complete flexibility to model more complicated geometries and processes of interest to ceramic component manufacturers but requires significantly more user interaction and expertise.

More Details

A protection profile for TASE.2

Carlson, Rolf E.; Beaver, Cheryl L.

This document represents the development of a protection profile (PP) for the IEC (International Electrotechnical Commission) protocol TASE.2 (Tele-control Application Service Element.2). A protection profile states assumptions about the TOE (Target of Evaluation), identifies threats to the TOE based on the assumptions, gives security goals to counter the threats, and finally identifies security functions to satisfy the security goals. Developing protection profiles for each protocol is a significant step towards developing measurable security for electric power automation systems. As an extension of the PP, the authors offer a generalization to any protocol at the evaluation assurance level (EAL) 2.

More Details

A naturalistic decision making model for simulated human combatants

Hunter, Keith O.; Hart, William E.; Forsythe, James C.

The authors describe a naturalistic behavioral model for the simulation of small unit combat. This model, Klein's recognition-primed decision making (RPD) model, is driven by situational awareness rather than a rational process of selecting from a set of action options. They argue that simulated combatants modeled with RPD will have more flexible and realistic responses to a broad range of small-scale combat scenarios. Furthermore, they note that the predictability of a simulation using an RPD framework can be easily controlled to provide multiple evaluations of a given combat scenario. Finally, they discuss computational issues for building an RPD-based behavior engine for fully automated combatants in small conflict scenarios, which are being investigated within Sandia's Next Generation Site Security project.

More Details

Investigation of the impact of cleaning on the adhesive bond and the process implications

Emerson, John A.; Guess, Tommy R.; Adkins, Carol L.; Curro, John G.; Reedy, Earl D.; Lopez, Edwin P.; Lemke, Paul A.

While surface cleaning is the most common process step in DOE manufacturing operations, the link between a successful adhesive bond and the surface clean performed before adhesion is not well understood. An innovative approach that combines computer modeling expertise, fracture mechanics understanding, and cleaning experience to address how to achieve a good adhesive bond is discussed here to develop a capability that would result in reduced cleaning development time and testing, improved bonds, improved manufacturability, and even an understanding that leads to improved aging. A simulation modeling technique, polymer reference interaction site model applied near wall (Wall PRISM), provided the capability to include contaminants on the surface. Calculations determined an approximately 8% reduction in the work of adhesion for 1% by weight of ethanol contamination on the structure of a silicone adhesive near a surface. The demonstration of repeatable coatings and quantitative analysis of the surface for deposition of controlled amounts of contamination (hexadecane and mineral oil) was based on three deposition methods. The effect of the cleaning process used on interfacial toughness was determined. The measured interfacial toughness of samples with a Brulin cleaned sandblasted aluminum surface was found to be {approximately} 15% greater than that with a TCE cleaned aluminum surface. The sensitivity of measured fracture toughness to various test conditions determined that both interfacial toughness and interface corner toughness depended strongly on surface roughness. The work of adhesion value for silicone/silicone interface was determined by a contact mechanics technique known as the JKR method. Correlation with fracture data has allowed a better understanding between interfacial fracture parameters and surface energy.

More Details

Fundamental understanding and development of low-cost, high-efficiency silicon solar cells

Ruby, Douglas S.

The overall objectives of this program are (1) to develop rapid and low-cost processes for manufacturing that can improve yield, throughput, and performance of silicon photovoltaic devices, (2) to design and fabricate high-efficiency solar cells on promising low-cost materials, and (3) to improve the fundamental understanding of advanced photovoltaic devices. Several rapid and potentially low-cost technologies are described in this report that were developed and applied toward the fabrication of high-efficiency silicon solar cells.

More Details

Composite Resonator Surface Emitting Lasers

Fischer, Arthur J.; Choquette, K.D.; Chow, Weng W.; Allerman, A.A.; Geib, K.M.

The authors have developed electrically-injected coupled-resonator vertical-cavity lasers and have studied their novel properties. These monolithically grown coupled-cavity structures have been fabricated with either one active and one passive cavity or with two active cavities. All devices use a selectively oxidized current aperture in the lower cavity, while a proton implant was used in the active-active structures to confine current in the top active cavity. They have demonstrated optical modulation from active-passive devices where the modulation arises from dynamic changes in the coupling between the active and passive cavities. The laser intensity can be modulated by either forward or reverse biasing the passive cavity. They have also observed Q-switched pulses from active-passive devices with pulses as short as 150 ps. A rate equation approach is used to model the Q-switched operation yielding good agreement between the experimental and theoretical pulseshape. They have designed and demonstrated the operation of active-active devices which la.se simultaneously at both longitudinal cavity resonances. Extremely large bistable regions have also been observed in the light-current curves for active-active coupled resonator devices. This bistability can be used for high contrast switching with contrast ratios as high as 100:1. Coupled-resonator vertical-cavity lasers have shown enhanced mode selectivity which has allowed devices to lase with fundamental-mode output powers as high as 5.2 mW.

More Details

A geometrically nonlinear shell element for hygrothermorheologically simple linear viscoelastic composites

AIAA Journal

Hammerand, Daniel C.

A triangular flat shell element for large deformation analysis of linear viscoelastic laminated composites is presented. Hygrothermorheologically simple materials are considered for which a change in the hygrothermal environment results in a horizontal shifting of the relaxation moduli curves on a log time scale, in addition to the usual hygrothermal loads. Recurrence relations are developed and implemented for the evaluation of the viscoelastic memory loads. The nonlinear deformation process is computed using an incremental/iterative approach with the Newton-Raphson Method used to find the incremental displacements in each step. The presented numerical examples consider the large deformation and stability of linear viscoelastic structures under deformation-independent mechanical loads, deformation-dependent pressure loads, and thermal loads. Unlike elastic structures that have a single critical load value associated with a given snapping of buckling instability phenomenon, viscoelastic structures will usually exhibit a particular instability for a range of applied loads over a range of critical times. Both creep buckling and snap-through examples are presented here. In some cases, viscoelastic results are also obtained using the quasielastic method in which load-history effects are ignored, and time-varying viscoelastic properties are simply used in a series of elastic problems. The presented numerical examples demonstrate the capability and accuracy of the formulation.

More Details

Solid state {sup 31}P/{sup 27}Al and {sup 31}P/{sup 23}Na MAS NMR dipolar dephasing investigations of connectivity in sodium aluminophosphate glasses

The Journal of Physical Chemistry B

Lang, David P.; Alam, Todd M.; Bencoe, Denise N.

Solid state {sup 31}P/{sup 27}Al and {sup 31}P/{sup 23}Na MAS NMR dipolar dephasing experiments have been used to investigate the spatial distribution of aluminum and sodium cations with respect to the phosphate backbone for a series of sodium aluminophosphate glasses, xAl{sub 2}O{sub 3}{center_dot}50Na{sub 2}O{center_dot}(50{minus}x)P{sub 2}O{sub 5} (0{le} x {le} 17.5). From the {sup 31}P/{sup 27}Al and {sup 31}P/{sup 23}Na connectivity data gathered, information about the medium range order in these glasses is obtained. The expanded connectivity data allows for better identification and interpretation of the new resonances observed in the {sup 31}P MAS NMR spectra with the addition of alumina. The results of the dipolar dephasing experiments show that the sodium-phosphate distribution remains relatively unchanged for the glass series, and that the addition of aluminum occurs primarily through the depolymerization of the phosphate tetrahedral backbone.

More Details

Calibration-free electrical conductivity measurements for highly conductive slags

Metallurgical Transactions B

Van Den Avyle, James A.; Melgaard, David K.

This research involves the measurement of the electrical conductivity (K) for the ESR (electroslag remelting) slag (60 wt.% CaF{sub 2} - 20 wt.% CaO - 20 wt.% Al{sub 2}O{sub 3}) used in the decontamination of radioactive stainless steel. The electrical conductivity is measured with an improved high-accuracy-height-differential technique that requires no calibration. This method consists of making continuous AC impedance measurements over several successive depth increments of the coaxial cylindrical electrodes in the ESR slag. The electrical conductivity is then calculated from the slope of the plot of inverse impedance versus the depth of the electrodes in the slag. The improvements on the existing technique include an increased electrochemical cell geometry and the capability of measuring high precision depth increments and the associated impedances. These improvements allow this technique to be used for measuring the electrical conductivity of highly conductive slags such as the ESR slag. The volatilization rate and the volatile species of the ESR slag measured through thermogravimetric (TG) and mass spectroscopy analysis, respectively, reveal that the ESR slag composition essentially remains the same throughout the electrical conductivity experiments.

More Details

Absolute intensities of the vacuum ultraviolet spectra in oxide etch plasma processing discharges

Journal of Vacuum Science and Technology

Woodworth, Joseph R.; Riley, Merle E.; Amatucci, Vincent A.; Hamilton, Thomas W.; Aragon, Ben P.

In this paper, the authors report the absolute intensities of ultraviolet light between 4.9 eV and 24 eV ( 250 nm to 50 mn ) striking a silicon wafer in a number of oxide-etch processing discharges. The emphasis is on photons with energies greater than 8.8 eV, which have enough energy to damage SiO{sub 2}. These discharges were in an inductively-driven Gaseous Electronics Conference reference cell which had been modified to more closely resemble commercial etching tools. Comparisons of measurements made through a side port in the cell and through a hole in the wafer indicate that the VUV light in these discharges is strongly trapped. For the pure halocarbon gases examined in these experiments (C{sub 2}F{sub 6}, CHF{sub 3}, C{sub 4}F{sub 8}), the fluxes of VUV photons to the wafer varied from 1 x 10{sup 15} to 3 x 10{sup 15} photons/cm{sup 2} sec or equivalently from 1.5 to 5 mW/cm{sup 2}. These measurements imply that 0.1% to 0.3% of the rf source power to these discharges ends up hitting the wafer as VUV photons for the typical 20 mT, 200 W rf discharges. For typical ashing discharges containing pure oxygen, the VUV intensities are slightly higher--about 8 mW/cm{sup 2} . As argon or hydrogen diluents are added to the fluorocarbon gases, the VUV intensities increase dramatically, with a 10/10/10 mixture of Ar/C{sub 2}F{sub 6}/H{sub 2} yielding VUV fluxes on the wafer 26 mW/cm{sup 2} and pure argon discharges yielding 52 mW/cm{sup 2} . Adding an rf bias to the wafer had only a small effect on the VUV observed through a side-port of the GEC cell.

More Details

Molecular dynamic simulations, {sup 6}Li solid state NMR and ultraphosphate glasses

NMR Newsletter

Alam, Todd M.

The author's laboratory continues to use NMR to investigate the structure and dynamics in amorphous materials, including the local structure of ultraphosphate glasses. Changes in the alkali environment in these phosphate glasses as a function of modifier concentration has recently been probed using {sup 6}Li and {sup 23}Na solid state NMR. Molecular dynamic (MD) simulations have also been performed in an attempt to gain additional insight into the variations of the local structure. Interestingly, although there are distinct variations in the Li coordination number as well as the Li-O bond lengths in the MD simulations (with a minimum or maximum in these parameters near the 20% Li{sub 2}O concentration), a linear change in the {sup 6}Li NMR chemical shift is observed between 5 and 50% Li{sub 2}O mole fraction. One would expect that such variations should be observable in the NMR chemical shift. In an attempt to understand this behavior the author has performed empirical calculation of the {sup 6}Li NMR chemical shift directly from the structures obtained in the MD simulations. It has been argued that the NMR chemical shift of alkali species can be related to a chemical shift parameter A, where A is defined as the summation of the shift contributions for all the oxygens located within the first (and possibly the second) coordination sphere around the cation. For the present case of Li phosphate glasses, the chemical shift correlates directly to the bond valence of the coordinating oxygen.

More Details

Optical properties of colloidal germanium nanocrystals

Physical Review BIS

Wilcoxon, Jess P.; Provencio, P.N.; Samara, George A.

Highly crystalline germanium (Ge) nanocrystals in the size range 2--10 nm were grown in inverse micelles and purified and size-separated by high pressure liquid chromatography with on-line optical and electrical diagnostics. The nanocrystals retain the diamond structure of bulk Ge down to at least 2.0 nm (containing about 150 Ge atoms). The background- and impurity-free extinction and photoluminescence (PL) spectra of these nanocrystals revealed rich structure which was interpreted in terms of the bandstructure of Ge shifted to higher energies by quantum confinement. The shifts ranged from {minus}0.1 eV to over 1 eV for the various transitions. PL in the range 350--700 nm was observed from nanocrystals 2--5 nm in size. The 2.0 nm nanocrystals yielded the most intense PL (at 420 nm) which is believed to be intrinsic and attributed to direct recombination at {Gamma}. Excitation at high energy (250 nm) populates most of the conduction bands resulting in competing recombination channels and the observed broad PL spectra.

More Details

Geomechanical modeling of reservoir compaction, surface subsidence, and casing damage at the Belridge diatomite field

SPE Reservoir Evaluation and Engineering

Fredrich, Joanne T.; Arguello, Jose G.

Geologic, and historical well failure, production, and injection data were analyzed to guide development of three-dimensional geomechanical models of the Belridge diatomite field, California. The central premise of the numerical simulations is that spatial gradients in pore pressure induced by production and injection in a low permeability reservoir may perturb the local stresses and cause subsurface deformation sufficient to result in well failure. Time-dependent reservoir pressure fields that were calculated from three-dimensional black oil reservoir simulations were coupled uni-directionally to three-dimensional non-linear finite element geomechanical simulations. The reservoir models included nearly 100,000 gridblocks (100--200 wells), and covered nearly 20 years of production and injection. The geomechanical models were meshed from structure maps and contained more than 300,000 nodal points. Shear strain localization along weak bedding planes that causes casing dog-legs in the field was accommodated in the model by contact surfaces located immediately above the reservoir and at two locations in the overburden. The geomechanical simulations are validated by comparison of the predicted surface subsidence with field measurements, and by comparison of predicted deformation with observed casing damage. Additionally, simulations performed for two independently developed areas at South Belridge, Sections 33 and 29, corroborate their different well failure histories. The simulations suggest the three types of casing damage observed, and show that although water injection has mitigated surface subsidence, it can, under some circumstances, increase the lateral gradients in effective stress, that in turn can accelerate subsurface horizontal motions. Geomechanical simulation is an important reservoir management tool that can be used to identify optimal operating policies to mitigate casing damage for existing field developments, and applied to incorporate the effect of well failure potential in economic analyses of alternative infilling and development options.

More Details

Surfkin: A program to solve transient and steady state heterogeneous reaction kinetics

Coltrin, Michael E.; Wixom, Ryan R.

Heterogeneous chemical reactions occurring at a gas/surface interface are fundamental in a variety of important applications, such as combustion, catalysis, chemical vapor deposition and plasma processing. Detailed simulation of these processes may involve complex, coupled fluid flow, heat transfer, gas-phase chemistry, in addition to heterogeneous reaction chemistry. This report documents the Surfkin program, which simulates the kinetics of heterogeneous chemical reactions. The program is designed for use with the Chemkin and Surface Chemkin (heterogeneous chemistry) programs. It calculates time-dependent or steady state surface site fractions and bulk-species production/destruction rates. The surface temperature may be specified as a function of time to simulate a temperature-programmed desorption experiment, for example. This report serves as a user's manual for the program, explaining the required input and format of the output. Two detailed example problems are included to further illustrate the use of this program.

More Details

Comprehensive testing to measure the response of butyl rubber to Hanford tank waste simulant

Nigrey, Paul J.

This report presents the findings of the Chemical Compatibility Program developed to evaluate plastic packaging components that may be incorporated in packaging mixed-waste forms for transportation. Consistent with the methodology outlined in this report, the authors performed the second phase of this experimental program to determine the effects of simulant Hanford tank mixed wastes on packaging seal materials. That effort involved the comprehensive testing of five plastic liner materials in an aqueous mixed-waste simulant. The testing protocol involved exposing the materials to {approximately}143, 286, 571, and 3,670 krad of gamma radiation and was followed by 7-, 14-, 28-, 180-day exposures to the waste simulant at 18, 50, and 60 C. Butyl rubber samples subjected to the same protocol were then evaluated by measuring seven material properties: specific gravity, dimensional changes, mass changes, hardness, compression set, vapor transport rates, and tensile properties. From the analyses, they determined that butyl rubber has relatively good resistance to radiation, this simulant, and a combination of these factors. These results suggest that butyl rubber is a relatively good seal material to withstand aqueous mixed wastes having similar composition to the one used in this study.

More Details

Materials Issues for Micromachines Development - ASCI Program Plan

Fang, H.E.; Miller, Samuel L.; Dugger, Michael T.; Prasad, Somuri V.; Reedy, Earl D.; Thompson, Aidan P.; Wong, Chungnin C.; Yang, Pin Y.; Battaile, Corbett C.; Benavides, Gilbert L.; Ensz, M.T.; Buchheit, Thomas E.; Lavan, David A.; Chen, Er-Ping C.; Christenson, Todd R.; De Boer, Maarten P.

This report summarizes materials issues associated with advanced micromachines development at Sandia. The intent of this report is to provide a perspective on the scope of the issues and suggest future technical directions, with a focus on computational materials science. Materials issues in surface micromachining (SMM), Lithographic-Galvanoformung-Abformung (LIGA: lithography, electrodeposition, and molding), and meso-machining technologies were identified. Each individual issue was assessed in four categories: degree of basic understanding; amount of existing experimental data capability of existing models; and, based on the perspective of component developers, the importance of the issue to be resolved. Three broad requirements for micromachines emerged from this process. They are: (1) tribological behavior, including stiction, friction, wear, and the use of surface treatments to control these, (2) mechanical behavior at microscale, including elasticity, plasticity, and the effect of microstructural features on mechanical strength, and (3) degradation of tribological and mechanical properties in normal (including aging), abnormal and hostile environments. Resolving all the identified critical issues requires a significant cooperative and complementary effort between computational and experimental programs. The breadth of this work is greater than any single program is likely to support. This report should serve as a guide to plan micromachines development at Sandia.

More Details

Technologies for energy storage flywheels and super conducting magnetic energy storage

Boyes, John D.

A flywheel is an electromechanical storage system in which energy is stored in the kinetic energy of a rotating mass. Flywheel systems under development include those with steel flywheel rotors and resin/glass or resin/carbon-fiber composite rotors. The mechanics of energy storage in a flywheel system are common to both steel- and composite-rotor flywheels. In both systems, the momentum of the rotating rotor stores energy. The rotor contains a motor/generator that converts energy between electrical and mechanical forms. In both types of systems, the rotor operates in a vacuum and spins on bearings to reduce friction and increase efficiency. Steel-rotor systems rely mostly on the mass of the rotor to store energy while composite flywheels rely mostly on speed. During charging, an electric current flows through the motor increasing the speed of the flywheel. During discharge, the generator produces current flow out of the system slowing the wheel down. The basic characteristics of a Flywheel system are shown. Steel flywheel systems are currently being marketed in the US and Germany and can be connected in parallel to provide greater power if required. Sizes range from 40kW to 1.6MW for times of 5--120 seconds. At this time sales are limited but growing. The suppliers of the composite type flywheel systems are currently in the prototype stages of development. Flywheel systems offer several potential advantages. FES systems, as their developers envision them will have exceptionally long service lives and low life-cycle costs as a result of minimal O and M requirements. FES systems are compact and self-contained allowing them to be placed in tight quarters, and they contain no hazardous chemicals nor do they produce flammable gases.

More Details

Reexamination of spent fuel shipment risk estimates

Sprung, J.L.

The risks associated with the transport of spent nuclear fuel by truck and rail have been reexamined and compared to results published in NUREG-O170 and the Modal Study. The full reexamination considered transport of PWR and BWR spent fuel by truck and rail in four generic Type B spent fuel casks. Because they are typical, this paper presents results only for transport of PWR spent fuel in steel-lead steel casks. Cask and spent fuel response to collision impacts and fires were evaluated by performing three-dimensional finite element and one-dimensional heat transport calculations. Accident release fractions were developed by critical review of literature data. Accident severity fractions were developed from Modal Study truck and rail accident event trees, modified to reflect the frequency of occurrence of hard and soft rock wayside route surfaces as determined by analysis of geographic data. Incident-free population doses and the population dose risks associated with the accidents that might occur during transport were calculated using the RADTRAN 5 transportation risk code. The calculated incident-free doses were compared to those published in NUREG-O170. The calculated accident dose risks were compared to dose risks calculated using NUREG-0170 and Modal Study accident source terms. The comparisons demonstrated that both of these studies made a number of very conservative assumptions about spent fuel and cask response to accident conditions, which caused their estimates of accident source terms, accident frequencies, and accident consequences to also be very conservative. The results of this study and the previous studies demonstrate that the risks associated with the shipment of spent fuel by truck or rail are very small.

More Details

Application of finite element, global polynomial, and kriging response surfaces in Progressive Lattice Sampling designs

Romero, Vicente J.; Swiler, Laura P.; Giunta, Anthony A.

This paper examines the modeling accuracy of finite element interpolation, kriging, and polynomial regression used in conjunction with the Progressive Lattice Sampling (PLS) incremental design-of-experiments approach. PLS is a paradigm for sampling a deterministic hypercubic parameter space by placing and incrementally adding samples in a manner intended to maximally reduce lack of knowledge in the parameter space. When combined with suitable interpolation methods, PLS is a formulation for progressive construction of response surface approximations (RSA) in which the RSA are efficiently upgradable, and upon upgrading, offer convergence information essential in estimating error introduced by the use of RSA in the problem. The three interpolation methods tried here are examined for performance in replicating an analytic test function as measured by several different indicators. The process described here provides a framework for future studies using other interpolation schemes, test functions, and measures of approximation quality.

More Details

Minimum-time control of systems with Coloumb friction: Near global optima via mixed integer linear programming

Driessen, Brian D.

This work presents a method of finding near global optima to minimum-time trajectory generation problem for systems that would be linear if it were not for the presence of Coloumb friction. The required final state of the system is assumed to be maintainable by the system, and the input bounds are assumed to be large enough so that they can overcome the maximum static Coloumb friction force. Other than the previous work for generating minimum-time trajectories for non redundant robotic manipulators for which the path in joint space is already specified, this work represents, to the best of the authors' knowledge, the first approach for generating near global optima for minimum-time problems involving a nonlinear class of dynamic systems. The reason the optima generated are near global optima instead of exactly global optima is due to a discrete-time approximation of the system (which is usually used anyway to simulate such a system numerically). The method closely resembles previous methods for generating minimum-time trajectories for linear systems, where the core operation is the solution of a Phase I linear programming problem. For the nonlinear systems considered herein, the core operation is instead the solution of a mixed integer linear programming problem.

More Details

Surety of human elements of high consequence systems: An organic model

Forsythe, James C.; Wenner, Caren

Despite extensive safety analysis and application of safety measures, there is a frequent lament, ``Why do we continue to have accidents?'' Two breakdowns are prevalent in risk management and prevention. First, accidents result from human actions that engineers, analysts and management never envisioned and second, controls, intended to preclude/mitigate accident sequences, prove inadequate. This paper addresses the first breakdown, the inability to anticipate scenarios involving human action/inaction. The failure of controls has been addressed in a previous publication (Forsythe and Grose, 1998). Specifically, this paper presents an approach referred to as surety. The objective of this approach is to provide high levels of assurance in situations where potential system failure paths cannot be fully characterized. With regard to human elements of complex systems, traditional approaches to human reliability are not sufficient to attain surety. Consequently, an Organic Model has been developed to account for the organic properties exhibited by engineered systems that result from human involvement in those systems.

More Details

Corrosion detection in multi-layered rotocraft structures

Roach, D.; Walkington, Phillip D.

Rotorcraft structures do not readily lend themselves to quantifiable inspection methods due to airframe construction techniques. Periodic visual inspections are a common practice for detecting corrosion. Unfortunately, when the telltale signs of corrosion appear visually, extensive repair or refurbishment is required. There is a need to nondestructively evaluate airframe structures in order to recognize and quantify corrosion before visual indications are present. Nondestructive evaluations of rotorcraft airframes face inherent problems different from those of the fixed wing industry. Most rotorcraft lap joints are very narrow, contain raised fastener heads, may possess distortion, and consist of thinner gage materials ({approximately}0.012--0.125 inches). In addition the structures involve stack-ups of two and three layers of thin gage skins that are separated by sealant of varying thickness. Industry lacks the necessary data techniques, and experience to adequately perform routine corrosion inspection of rotorcraft. In order to address these problems, a program is currently underway to validate the use of eddy current inspection on specific rotorcraft lap joints. Probability of detection (POD) specimens have been produced that simulate two lap joint configurations on a model TH-57/206 helicopter. The FAA's Airworthiness Assurance Center (AANC) at Sandia Labs and Bell Helicopter have applied single and dual frequency eddy current (EC) techniques to these test specimens. The test results showed enough promise to justify beta site testing of the eddy current methods evolved in this study. The technique allows users to distinguish between corrosion signals and those caused by varying gaps between the assembly of skins. Specific structural joints were defined as prime corrosion areas and a series of corrosion specimens were produced with 5--20% corrosion distributed among the layers of each joint. Complete helicopter test beds were used to validate the laboratory findings. This paper will present the laboratory and field results that quantify the EC technique's corrosion detection performance. Plans for beta site testing, adoption of the new inspection procedure into routine rotorcraft maintenance, and NDI training issues will also be discussed.

More Details

Scalable rendering on PC clusters

Wylie, Brian N.; Lewis, Vasily L.; Shirley, David N.; Pavlakos, Constantine P.

This case study presents initial results from research targeted at the development of cost-effective scalable visualization and rendering technologies. The implementations of two 3D graphics libraries based on the popular sort-last and sort-middle parallel rendering techniques are discussed. An important goal of these implementations is to provide scalable rendering capability for extremely large datasets (>> 5 million polygons). Applications can use these libraries for either run-time visualization, by linking to an existing parallel simulation, or for traditional post-processing by linking to an interactive display program. The use of parallel, hardware-accelerated rendering on commodity hardware is leveraged to achieve high performance. Current performance results show that, using current hardware (a small 16-node cluster), they can utilize up to 85% of the aggregate graphics performance and achieve rendering rates in excess of 20 million polygons/second using OpenGL{reg_sign} with lighting, Gouraud shading, and individually specified triangles (not t-stripped).

More Details

Modeling of transient ionizing radiation effects in bipolar devices at high dose-rates

Hjalmarson, Harold P.; Muyshondt, Arnoldo M.

To optimally design circuits for operation at high intensities of ionizing radiation, and to accurately predict their a behavior under radiation, precise device models are needed that include both stationary and dynamic effects of such radiation. Depending on the type and intensity of the ionizing radiation, different degradation mechanisms, such as photoelectric effect, total dose effect, or single even upset might be dominant. In this paper, the authors consider the photoelectric effect associated with the generation of electron-hole pairs in the semiconductor. The effects of low radiation intensity on p-II diodes and bipolar junction transistors (BJTs) were described by low-injection theory in the classical paper by Wirth and Rogers. However, in BJTs compatible with modem integrated circuit technology, high-resistivity regions are often used to enhance device performance, either as a substrate or as an epitaxial layer such as the low-doped n-type collector region of the device. Using low-injection theory, the transient response of epitaxial BJTs was discussed by Florian et al., who mainly concentrated on the effects of the Hi-Lo (high doping - low doping) epilayer/substrate junction of the collector, and on geometrical effects of realistic devices. For devices with highly resistive regions, the assumption of low-level injection is often inappropriate, even at moderate radiation intensities, and a more complete theory for high-injection levels was needed. In the dynamic photocurrent model by Enlow and Alexander. p-n junctions exposed to high-intensity radiation were considered. In their work, the variation of the minority carrier lifetime with excess carrier density, and the effects of the ohmic electric field in the quasi-neutral (q-n) regions were included in a simplified manner. Later, Wunsch and Axness presented a more comprehensive model for the transient radiation response of p-n and p-i-n diode geometries. A stationary model for high-level injection in p-n junctions was developed by Isaque et al. They used a more complete ambipolar transport equation, which included the dependencies of the transport parameters (ambipolar diffusion constant, mobility, and recombination rate) on the excess minority carrier concentration. The expression used for the recombination rate was that of Shockley-Reed-Hall (SRH) recombination which is dominant for low to mid-level radiation intensities. However, at higher intensities, Auger recombination becomes important eventually dominant. The complete ambipolar transport equation including the complicated dependence of transport parameters on the radiation intensity, cannot be solved analytically. This solution is obtained for each of the regimes where a given recombination mechanism dominates, and then by joining these solutions using appropriate smoothing functions. This approach allows them to develop a BJT model accounting for the photoelectric effect of the ionizing radiation that can be implemented in SPICE.

More Details

Correlation of chemical and mechanical property changes during oxidative degradation of neoprene

Polymer Degradation and Stability

Celina, Mathias C.

The thermal degradation of a commercial, stabilized, unfilled neoprene (chloroprene) rubber was investigated at temperatures up to 140 °C. The degradation of this material is dominated by oxidation rather than dehydrochlorination. Important heterogeneous oxidation effects were observed at the various temperatures investigated using infrared micro-spectroscopy and modulus profiling. Intensive degradation-related spectral changes in the IR occurred in the conjugated carbonyl and hydroxyl regions. Quantitative analysis revealed some differences in the development of the IR oxidation profiles, particularly towards the sample surface. These chemical degradation profiles were compared with modulus profiles (mechanical properties). It is concluded that the profile development is fundamentally described by a diffusion-limited autoxidation mechanism. Oxygen consumption measurements showed that the oxidation rates display non-Arrhenius behavior (curvature) at low temperatures. The current results, when compared to those of a previously studied, clay-filled commercial neoprene formulation, indicate that the clay filler acts as an antioxidant, but only at low temperatures.

More Details

A note on the transition from coupled plasticity and damage to decohesion in the evolution of solder failure

Journal of Applied Mechanics

Fang, H.E.

A key issue of solder joint reliability is joint failure due to thermomechanical fatigue (TMF). TMF is caused by different coefficients of thermal expansion (CTEs) of the materials in an electronic package, combined with changes in the ambient temperature. Different CTEs result in cyclical strain in the assembly, and this strain is concentrated almost entirely in the solder because it is the most deformable portion of the package. Since solder alloy is at a significant fraction of its melting point even at room temperature, the cyclical strain enhances mass diffusion and causes dramatic changes in the alloy microstructure over time. As the microstructure changes and becomes coarser, the solder alloy weakens and eventually microcracks nucleate and grow in the joint, leading to component failure. the failure of solder joints is difficult to detect due to the inert nature of the electrical system. If the system is not on for extended periods then failures can not be observed. Therefore it is important to develop an advanced predictive capability which allows scientists and engineers to predict solder degradation and identify reliability problems in aging electronics early.

More Details

Simulation of Npn and Pnp AlGaN/GaN heterojunction bipolar transistors performances: Limiting factors and optimum design

IEEE Transactions on Electron Devices

Chang, Ping-Chih; Han, J.; Shul, Randy J.; Baca, A.G.

The performance capabilities of Npn and Pnp AlGaN/GaN heterojunction bipolar transistors have been investigated by using a drift-diffusion transport model. Numerical results have been employed to study the effect of the p-type Mg doping and its incomplete ionization on device performance. The high base resistance induced by the deep acceptor level is found to be the cause of limited current gain values for Npn devices. Several computation approaches have been considered to improve their performance. Reasonable improvement of the DC current gain {beta} is observed by realistically reducing the base thickness in accordance with processing limitations. Base transport enhancement is also predicted by the introduction of a quasi-electric field in the base. The impact of the base resistivity on high-frequency characteristics is investigated for Npn AlGaN/GaN devices. Optimized predictions with maximum oscillation frequency value as high as f{sub MAX} = 20 GHz and a unilateral power gain--U = 25 dB make this bipolar GaN-based technology compatible with communication applications. Simulation results reveal that the restricted amount of free carriers from the p-doped emitter limits Pnp's DC performances operating in common emitter configuration. A preliminary analysis of r.f. characteristics for the Pnp counterpart indicates limited performance mainly caused by the degraded hole mobility.

More Details

Effect of morphology of hydrophobic surfaces on cavitation kinetics

Journal of Chemical Physics

Leung, Kevin

Cavitation has been suggested to be a possible source of long range interactions between mesoscopic hydrophobic surfaces. While evaporation is predicted by thermodynamics, little is known about its kinetics. Glauber dynamics Monte Carlo simulations of a lattice gas close to liquid-gas coexistence and confined between partially drying surfaces are used to model the effect of water confinement on the dynamics of surface-induced phase transition. Specifically, they examine how kinetics of induced evaporation change as the texture of hydrophobic surfaces is varied. Evaporation rates are considerably slowed with relatively small amount of hydrophilic coverage. However, the distribution of hydrophilic patches is found to be crucial, with the homogeneous one being much more effective in slowing the formation of vapor tubes which triggers the evaporation process. They estimate the free energy barrier of vapor tube formation via transition state theory, using a constrained forward-backward umbrella sampling technique applied to the metastable, confined liquid. Furthermore, to relate simulation rates to experimental ones, they perform simulations using the mass-conserving Kawasaki algorithm. They predict evaporation time scales that range from hundreds of picoseconds in the case of mesoscopic surfaces {approximately} 10{sup 4} nm{sup 2} to tens of nanoseconds for smaller surfaces {approximately} 40 nm{sup 2}, when the two surfaces are {approximately} 10 solvent layers apart. The present study demonstrates that cavitation is kinetically viable in real systems and should be considered in studies of processes at confined geometry.

More Details

Demonstration of highly efficient waveguiding in a photonic crystal slab at x=1.5{micro}m wavelengths

Optics Letters

Lin, Shawn-Yu L.; Chow, Kai-Cheung

Highly efficient transmission of 1.5 {micro}m light in a two-dimensional (2D) photonic crystal slab waveguide is experimentally demonstrated. The light wave is shown to be guided along a triple-line defect formed within a 2D crystal and vertically by a strong index-guiding mechanism. At certain wavelength ranges, a complete transmission is observed, suggesting a lossless guiding along this photonic 1D conduction channel.

More Details

III-Sb (001) growth surfaces: Structure and island nucleation

Physical Review Letters

Modine, N.A.

The authors have determined the reconstructions present on AlSb and GaSb(001) under conditions typical for device growth by molecular beam epitaxy. Within the range of Sb flux and temperature where the diffraction pattern is nominally (1 x 3), three distinct (4 x 3) reconstructions actually occur. The three structures are different than those previously proposed for these growth conditions, with two incorporating mixed III-V dimers on the surface. The presence of these hetero-dimers in the top Sb layer leads to an island nucleation and growth mechanism fundamentally different than for other III-V systems.

More Details

Mechanical properties and shear failure surfaces of two alumina powders in triaxial compression

Journal of Materials Science

Zeuch, David H.; Grazier, J.M.; Arguello, Jose G.; Ewsuk, Kevin G.

In the manufacture of ceramic components, near-net-shape parts are commonly formed by uniaxially pressing granulated powders in rigid dies. Density gradients that are introduced into a powder compact during press-forming often increase the cost of manufacturing, and can degrade the performance and reliability of the finished part. Finite element method (FEM) modeling can be used to predict powder compaction response, and can provide insight into the causes of density gradients in green powder compacts; however, accurate numerical simulations require accurate material properties and realistic constitutive laws. To support an effort to implement an advanced cap plasticity model within the finite element framework to realistically simulate powder compaction, the authors have undertaken a project to directly measure as many of the requisite powder properties for modeling as possible. A soil mechanics approach has been refined and used to measure the pressure dependent properties of ceramic powders up to 68.9 MPa (10,000 psi). Due to the large strains associated with compacting low bulk density ceramic powders, a two-stage process was developed to accurately determine the pressure-density relationship of a ceramic powder in hydrostatic compression, and the properties of that same powder compact under deviatoric loading at the same specific pressures. Using this approach, the seven parameters that are required for application of a modified Drucker-Prager cap plasticity model were determined directly. The details of the experimental techniques used to obtain the modeling parameters and the results for two different granulated alumina powders are presented.

More Details

Algebraic mesh quality metrics

SIAM Journal of Scientific Computing

Knupp, Patrick K.

Quality metrics for structured and unstructured mesh generation are placed within an algebraic framework to form a mathematical theory of mesh quality metrics. The theory, based on the Jacobian and related matrices, provides a means of constructing, classifying, and evaluating mesh quality metrics. The Jacobian matrix is factored into geometrically meaningful parts. A nodally-invariant Jacobian matrix can be defined for simplicial elements using a weight matrix derived from the Jacobian matrix of an ideal reference element. Scale and orientation-invariant algebraic mesh quality metrics are defined. the singular value decomposition is used to study relationships between metrics. Equivalence of the element condition number and mean ratio metrics is proved. Condition number is shown to measure the distance of an element to the set of degenerate elements. Algebraic measures for skew, length ratio, shape, volume, and orientation are defined abstractly, with specific examples given. Combined metrics for shape and volume, shape-volume-orientation are algebraically defined and examples of such metrics are given. Algebraic mesh quality metrics are extended to non-simplical elements. A series of numerical tests verify the theoretical properties of the metrics defined.

More Details

Real-space and energy representations for the interface roughness scattering in quantum-well structures

Solid State Communications

Lyo, S.K.

The authors show that the real space representation of the interface-roughness as a fluctuating potential in the coordinate space is equivalent to the usual energy-fluctuation representation for intrasublevel scattering in a single quantum well with a generally shaped confinement-potential profile. The coordinate picture is, however, more general and can be used for higher-order effects and multi-sublevel scattering in coupled multi-quantum-well structures.

More Details

Integrated experimental and computational methods for structure determination and characterization of a new, highly stable cesium silicotitanate phase, Cs{sub 2}TiSi{sub 6}O{sub 15} (SNL-A)

Journal of Materials Chemistry

Nyman, M.; Bonhomme, F.; Teter, D.M.; Nenoff, T.M.

Exploratory hydrothermal synthesis in the system Cs{sub 2}O-SiO{sub 2}-TiO{sub 2}-H{sub 2}O has produced a new polymorph of Cs{sub 2}TiSi{sub 6}O{sub 15} (SNL-A) whose structure was determined using a combination of experimental and theoretical techniques ({sup 29}Si and {sup 133}Cs NMR, X-ray Rietveld refinement, and Density Functional Theory). SNL-A crystallizes in the monoclinic space-group Cc with unit cell parameters: a = 12.998(2) {angstrom}, b = 7.5014(3) {angstrom}, c = 15.156(3) {angstrom}, {eta} = 105.80(3) {degree}. The SNL-A framework consists of silicon tetrahedra and titanium octahedra which are linked in 3-, 5-, 6-, 7- and 8-membered rings in three dimensions. SNL-A is distinctive from a previously reported C2/c polymorph of Cs{sub 2}TiSi{sub 6}O{sub 15} by different ring geometries. Similarities and differences between the two structures are discussed. Other characterizations of SNL-A include TGA-DTA, Cs/Si/Ti elemental analyses, and SEM/EDS. Furthermore, the chemical and radiation durability of SNL-A was studied in interest of ceramic waste form applications. These studies show that SNL-A is durable in both radioactive and rigorous chemical environments. Finally, calculated cohesive energies of the two Cs{sub 2}TiSi{sub 6}O{sub 15} polymorphs suggest that the SNL-A phase (synthesized at 200 C) is energetically more favorable than the C2/c polymorph (synthesized at 1,050 C).

More Details

Proposed foreword to the ATM Security Specification Version 1.1

Witzke, Edward L.; Tarman, Thomas D.

A number of substantive modifications were made from Version 1.0 to Version 1.1 of the ATM Security Specification. To assist implementers in identifying these modifications, the authors propose to include a foreword to the Security 1.1 specification that lists these modifications. Typically, a revised specification provides some mechanism for implementers to determine the modifications that were made from previous versions. Since the Security 1.1 specification does not include change bars or other mechanisms that specifically direct the reader to these modifications, they proposed to include a modification table in a foreword to the document. This modification table should also be updated to include substantive modifications that are made at the San Francisco meeting.

More Details

Research needs of c-Si technology required to meet roadmap milestones

Ruby, Douglas S.

In this paper, the authors examined the areas in c-Si growth, materials, and processing that require improvement through research to overcome barriers to the implementation of the photovoltaic road maps's Si goals. To obtain PV module throughput to the roadmap target of 200 MW/factory/year, the typical Si PV factory must produce >4,000 m{sup 2}/day of silicon.

More Details

Chemical vapor deposition coating for micromachines

Mani, Seethambal S.; Fleming, J.G.; Sniegowski, Jeffry J.; De Boer, Maarten P.; Irwin, L.W.; Walraven, J.A.; Tanner, Danelle M.; Dugger, Michael T.

Two major problems associated with Si-based MEMS devices are stiction and wear. Surface modifications are needed to reduce both adhesion and friction in micromechanical structures to solve these problems. In this paper, the authors will present a process used to selectively coat MEMS devices with tungsten using a CVD (Chemical Vapor Deposition) process. The selective W deposition process results in a very conformal coating and can potentially solve both stiction and wear problems confronting MEMS processing. The selective deposition of tungsten is accomplished through silicon reduction of WF{sub 6}, which results in a self-limiting reaction. The selective deposition of W only on polysilicon surfaces prevents electrical shorts. Further, the self-limiting nature of this selective W deposition process ensures the consistency necessary for process control. Selective tungsten is deposited after the removal of the sacrificial oxides to minimize process integration problems. This tungsten coating adheres well and is hard and conducting, requirements for device performance. Furthermore, since the deposited tungsten infiltrates under adhered silicon parts and the volume of W deposited is less than the amount of Si consumed, it appears to be possible to release stuck parts that are contacted over small areas such as dimples. Results from tungsten deposition on MEMS structures with dimples will be presented. The effect of wet and vapor phase cleanings prior to the deposition will be discussed along with other process details. The W coating improved wear by orders of magnitude compared to uncoated parts. Tungsten CVD is used in the integrated-circuit industry, which makes this approach manufacturable.

More Details

New methods for predicting lifetimes. Part 2 -- The Wear-out approach for predicting the remaining lifetime of materials

Gillen, Kenneth T.; Celina, Mathias C.

The so-called Palmgren-Miner concept that degradation is cumulative, and that failure is therefore considered to be the direct result of the accumulation of damage with time, has been known for decades. Cumulative damage models based on this concept have been derived and used mainly for fatigue life predictions for metals and composite materials. The authors review the principles underlying such models and suggest ways in which they may be best applied to polymeric materials in temperature environments. The authors first consider cases where polymer degradation data can be rigorously time-temperature superposed over a given temperature range. For a step change in temperature after damage has occurred at an initial temperature in this range, they show that the remaining lifetime at the second temperature should be linearly related to the aging time prior to the step. This predicted linearity implies that it may be possible to estimate the remaining lifetime of polymeric materials aging under application ambient conditions by completing the aging at an accelerated temperature. They refer to this generic temperature-step method as the Wear-out approach. They then outline the expectations for Wear-out experiments when time-temperature superposition is invalid, specifically describing the two cases where so-called interaction effects are absent and are present. Finally, they present some preliminary results outlining the application of the Wear-out approach to polymers. In analyzing the experimental Wear-out results, they introduce a procedure that they refer to as time-damage superposition. This procedure not only utilizes all of the experimental data instead of a single point from each data set, but also allows them to determine the importance of any interaction effects.

More Details

Battery charging in float vs. cycling environments

Corey, Garth P.

In lead-acid battery systems, cycling systems are often managed using float management strategies. There are many differences in battery management strategies for a float environment and battery management strategies for a cycling environment. To complicate matters further, in many cycling environments, such as off-grid domestic power systems, there is usually not an available charging source capable of efficiently equalizing a lead-acid battery let alone bring it to a full state of charge. Typically, rules for battery management which have worked quite well in a floating environment have been routinely applied to cycling batteries without full appreciation of what the cycling battery really needs to reach a full state of charge and to maintain a high state of health. For example, charge target voltages for batteries that are regularly deep cycled in off-grid power sources are the same as voltages applied to stand-by systems following a discharge event. In other charging operations equalization charge requirements are frequently ignored or incorrectly applied in cycled systems which frequently leads to premature capacity loss. The cause of this serious problem: the application of float battery management strategies to cycling battery systems. This paper describes the outcomes to be expected when managing cycling batteries with float strategies and discusses the techniques and benefits for the use of cycling battery management strategies.

More Details

Heterogeneity, permeability patterns, and permeability upscaling: Physical characterization of a block of Massillon sandstone exhibiting nested scales of heterogeneity

SPE Reservoir Evaluation and Engineering

Tidwell, Vincent C.

Over 75,000 permeability measurements were collected from a meter-scale block of Massillon sandstone, characterized by conspicuous cross bedding that forms two distinct nested-scales of heterogeneity. With the aid of a gas minipermeameter, spatially exhaustive fields of permeability data were acquired at each of five different sample supports (i.e. sample volumes) from each block face. These data provide a unique opportunity to physically investigate the relationship between the multi-scale cross-stratified attributes of the sandstone and the corresponding statistical characteristics of the permeability. These data also provide quantitative physical information concerning the permeability upscaling of a complex heterogeneous medium. Here, a portion of the data taken from a single block face cut normal to stratification is analyzed. Results indicate a strong relationship between the calculated summary statistics and the cross-stratified structural features visible evident in the sandstone sample. Specifically, the permeability fields and semivariograms are characterized by two nested scales of heterogeneity, including a large-scale structure defined by the cross-stratified sets (delineated by distinct bounding surfaces) and a small-scale structure defined by the low-angle cross-stratification within each set. The permeability data also provide clear evidence of upscaling. That is, each calculated summary statistic exhibits distinct and consistent trends with increasing sample support. Among these trends are an increasing mean, decreasing variance, and an increasing semivariogram range. Results also clearly indicate that the different scales of heterogeneity upscale differently, with the small-scale structure being preferentially filtered from the data while the large-scale structure is preserved. Finally, the statistical and upscaling characteristics of individual cross-stratified sets were found to be very similar owing to their shared depositional environment; however, some differences were noted that are likely the result of minor variations in the sediment load and/or flow conditions between depositional events.

More Details

Insentropic compression of solid using pulsed magnetic loading

Review of Scientific Instruments (American Physical Society)

Hall, Clint A.; Asay, James R.; Stygar, William A.; Spielman, Rick B.; Rosenthal, Stephen E.; Knudson, Marcus D.

Shock loading techniques are often used to determine material response along a specific pressure loading curve referred to as the Hugoniot. However, many technological and scientific applications require accurate determination of dynamic material response that is off-Hugoniot, covering large regions of the equation-of-state surface. Unloading measurements from the shocked state provide off-Hugoniot information, but experimental techniques for measuring compressive off-Hugoniot response have been limited. A new pulsed magnetic loading technique is presented which provides previously unavailable information on isentropic loading of materials to pressures of several hundred kbar. This smoothly increasing pressure loading provides a good approximation to the high-pressure material isentrope centered at ambient conditions. The approach uses high current densities to create ramped magnetic loading to a few hundred kbar over time intervals of 100--200 ns. The method has successfully determined the isentropic mechanical response of copper to about 200 kbar and has been used to evaluate the kinetics of the alpha-epsilon phase transition occurring in iron at 130 kbar. With refinements in progress, the method shows promise for performing isentropic compression experiments to multi-Mbar pressures.

More Details

Comparison of fabrication approaches for selectively oxidized VCSEL arrays

Geib, K.M.; Choquette, K.D.; Allerman, A.A.; Briggs, R.D.; Hindi, Jana J.

The impressive performance improvements of laterally oxidized VCSELs come at the expense of increased fabrication complexity for 2-dimensional arrays. Since the epitaxial layers to be wet-thermally oxidized must be exposed, non-planarity can be an issue. This is particularly important in that electrical contact to both the anode and cathode of the diode must be brought out to a package. They have investigated four fabrication sequences suitable for the fabrication of 2-dimensional VCSEL arrays. These techniques include: mesa etched polymer planarized, mesa etched bridge contacted, mesa etched oxide isolated (where the electrical trace is isolated from the substrate during the oxidation) and oxide/implant isolation (oxidation through small via holes) all of which result in VCSELs with outstanding performance. The suitability of these processes for manufacturing are assessed relative to oxidation uniformity, device capacitance, and structural ruggedness for packaging.

More Details

Development of a high-power and high-energy thermal battery

Guidotti, Ronald A.; Scharrer, Gregory L.; Reinhardt, Frederick W.

The Li(Si)/FeS{sub 2} and Li(Si)/CoS{sub 2} couples were evaluated with a low-melting LiBr-KBr-LiF eutectic and all-Li LiCl-LiBr-LiF electrolyte for a battery application that required both high energy and high power for short duration. Screening studies were carried out with 1.25 inch-dia. triple cells and with 10-cell batteries. The Li(Si)/LiCl-LiBr-LiF/CoS{sub 2} couple performed the best under the power load and the Li(Si)/LiCl-LiBr-LiF/FeS{sub 2} was better under the energy load. The former system was selected as the best overall performer for the wide range of temperatures for both loads, because of the higher thermal stability of CoS{sub 2}.

More Details

Single transverse mode selectively oxidized vertical cavity lasers

Laser Focus World (May 2000)

Choquette, K.D.

Vertical cavity surface emitting laser (VCSEL) sources have been adopted into Gigabit Ethernet applications in a remarkably short time period. VCSELs are particularly suitable for multimode optical fiber local area networks (LANs), due to their reduced threshold current, circular output beam, and inexpensive and high volume manufacture. Moreover, selectively oxidized VCSELs are nearly ideal LAN sources since the oxide aperture within the laser cavity produces strong electrical and optical confinement which enables high electrical to optical conversion efficiency and minimal modal discrimination allowing emission into multiple transverse optical modes. In addition to the large demand for multimode lasers, VCSELs which emit into a single optical mode are also increasingly sought for emerging applications, which include data communication with single mode optical fiber, bar code scanning, laser printing, optical read/write heads, and modulation spectroscopy. To achieve single mode selectively oxidized VCSELs is a challenging task, since the inherent index confinement within these high performance lasers is very large.

More Details

Effective index model predicts modal frequencies of vertical-cavity lasers

Applied Physics Letters

Serkland, Darwin K.; Hadley, G.R.; Choquette, K.D.; Geib, K.M.; Allerman, A.A.

Previously, an effective index optical model was introduced for the analysis of lateral waveguiding effects in vertical-cavity surface-emitting lasers. The authors show that the resultant transverse equation is almost identical to the one typically obtained in the analysis of dielectric waveguide problems, such as a step-index optical fiber. The solution to the transverse equation yields the lateral dependence of the optical field and, as is recognized in this paper, the discrete frequencies of the microcavity modes. As an example, they apply this technique to the analysis of vertical-cavity lasers that contain thin-oxide apertures. The model intuitively explains the experimental data and makes quantitative predictions in good agreement with a highly accurate numerical model.

More Details

Wavelength dependent measurements of optical fiber transit time, material dispersion, and attenuation

Journal of Applied Optics

Cochrane, Kyle C.; Bailey, James E.; Lake, Patrick W.; Carlson, Alan L.

A new method for measuring the wavelength dependence of the transit time, material dispersion, and attenuation of an optical fiber is described. The authors inject light from a 4-ns risetime pulsed broad-band flashlamp into various length fibers and record the transmitted signals with a time-resolved spectrograph. Segments of data spanning an approximately 3,000 {angstrom} range are recorded from a single flashlamp pulse. Comparison of data acquired with short and long fibers enables the determination of the transit time and the material dispersion as functions of wavelength dependence for the entire recorded spectrum simultaneously. The wavelength dependent attenuation is also determined from the signal intensities. The method is demonstrated with experiments using a step index 200-{micro}m-diameter SiO{sub 2} fiber. The results agree with the transit time determined from the bulk glass refractive index to within {+-} 0.035% for the visible (4,000--7,200 {angstrom}) spectrum and 0.12% for the ultraviolet (2,650--4,000 {angstrom}) spectrum, and with the attenuation specified by the fiber manufacturer to within {+-} 10%.

More Details

InGaP/InGaAsN/GaAs NpN double-heterojunction bipolar transistor

Applied Physics Letters

Chang, P.C.; Baca, A.G.

We have demonstrated a functional NpN double-heterojunction bipolar transistor (DHBT) using InGaAsN for the base layer. The InGaP/In0.03Ga0.97As0.99N0.01/GaAs DHBT has a low VON of 0.81 V, which is 0.13 V lower than in a InGaP/GaAs heterojunction bipolar transistor (HBT). The lower turn-on voltage is attributed to the smaller band gap (1.20 eV) of metalorganic chemical vapor deposition-grown In0.03Ga0.97As0.99N0.01 base layer. GaAs is used for the collector; thus the breakdown voltage (BVCEO) is 10 V, consistent with the BVCEO of InGaP/GaAs HBTs of comparable collector thickness and doping level. To alleviate the current blocking phenomenon caused by the larger conduction band discontinuity between InGaAsN and GaAs, a graded InGaAs layer with δ doping is inserted at the base-collector junction. The improved device has a peak current gain of seven with ideal current-voltage characteristics. © 2000 American Institute of Physics.

More Details

Impedance studies on Li-ion cathodes

Nagasubramanian, Ganesan N.

This paper describes the author's 2- and 3-electrode impedance results of metal oxide cathodes. These results were extracted from impedance data on 18650 Li-ion cells. The impedance results indicate that the ohmic resistance of the cell is very nearly constant with state-of-charge (SOC) and temperature. For example, the ohmic resistance of 18650 Li-ion cells is around 60 m{Omega} for different SOCS (4.1V to 3.0V) and temperatures from 35 C to {minus}20 C. However, the interfacial impedance shows a modest increase with SOC and a huge increase of between 10 and 100 times with decreasing temperature. For example, in the temperature regime (35 C down to {minus}20 C) the overall cell impedance has increased from nearly 200 m{Omega} to 8,000 m{Omega}. Most of the increase in cell impedance comes from the metal oxide cathode/electrolyte interface.

More Details

Investigation of elevated temperature aging effects on lithium-ion cells

Jungst, Rudolph G.; Nagasubramanian, Ganesan N.; Ingersoll, David I.

Electrical and chemical measurements have been made on 18650-size lithium-ion cells that have been exposed to calendar and cycle life aging at temperatures up to 70 C. Aging times ranged from 2 weeks at the highest temperature to several months under more moderate conditions. After aging, the impedance behavior of the cells was reversed from that found originally, with lower impedance at low state of charge and the total impedance was significantly increased. Investigations using a reference electrode showed that these changes are primarily due to the behavior of the cathode. Measurements of cell impedance as a function of cell voltage reveal a pronounced minimum in the total impedance at approximately 40--50% state-of-charge (SOC). Chemical analysis data are presented to support the SOC assignments for aged and unaged cells. Electrochemical impedance spectroscopy (EIS) data have been recorded at several intermediate states of charge to construct the impedance vs. open circuit voltage curve for the cell. This information has not previously been available for the LiNi{sub 0.85}Co{sub 0.15}O{sub 2} cathode material. Structural and chemical analysis information obtained from cell components removed during postmortems will also be discussed in order to reveal the true state of charge of the cathode and to develop a more complete lithium inventory for the cell.

More Details

Adhesion hysteresis of silane coated microcantilevers

Acta Materials

De Boer, Maarten P.; Knapp, J.A.; Michalske, Terry A.

The authors have developed a new experimental approach for measuring hysteresis in the adhesion between micromachined surfaces. By accurately modeling the deformations in cantilever beams that are subject to combined interfacial adhesion and applied electrostatic forces, they determine adhesion energies for advancing and receding contacts. They draw on this new method to examine adhesion hysteresis for silane coated micromachined structures and found significant hysteresis for surfaces that were exposed to high relative humidity (RH) conditions. Atomic force microscopy studies of these surfaces showed spontaneous formation of agglomerates that they interpreted as silages that have irreversibly transformed from uniform surface layers at low RH to isolated vesicles at high RH. They used contact deformation models to show that the compliance of these vesicles could reasonably account for the adhesion hysteresis that develops at high RH as the surfaces are forced into contact by an externally applied load.

More Details

The equilibrium state of hydrogen in gallium nitride: Theory and experiment

Journal of Applied Physics

Myers, S.M.; Wright, Alan F.; Peterscn, G.A.; Seager, Carleton H.; Wampler, William R.; Crawford, Mary H.; Han, J.

Formation energies and vibrational frequencies for H in wurtzite GaN were calculated from density functional theory and used to predict equilibrium state occupancies and solid solubilities for p-type, intrinsic, and n-type material. The solubility of deuterium (D) was measured at 600--800 C as a function of D{sub 2} pressure and doping and compared with theory. Agreement was obtained by reducing the H formation energies 0.2 eV from ab-initio theoretical values. The predicted stretch-mode frequency for H bound to the Mg acceptor lies 5% above an observed infrared absorption attributed to this complex. It is concluded that currently recognized H states and physical processes account for the equilibrium behavior of H examined in this work.

More Details

Scalability limitations of VIA-based technologies in supporting MPI

Brightwell, Ronald B.; Maccabe, Arthur B.

This paper analyzes the scalability limitations of networking technologies based on the Virtual Interface Architecture (VIA) in supporting the runtime environment needed for an implementation of the Message Passing Interface. The authors present an overview of the important characteristics of VIA and an overview of the runtime system being developed as part of the Computational Plant (Cplant) project at Sandia National Laboratories. They discuss the characteristics of VIA that prevent implementations based on this system to meet the scalability and performance requirements of Cplant.

More Details

The Polychromator: A programmable MEMS diffraction grating for synthetic spectra

Butler, Michael A.; Sinclair, Michael B.; Plowman, Thomas E.

The authors report here the design, fabrication and demonstration of an electrostatically actuated MEMS diffractive optical device, the Polychromator grating. The Polychromator grating enables a new type of correlation spectrometer for remote detection of a wide range of chemical species, offering electronic programmability, high specificity and sensitivity, fast response and ruggedness. Significant results include: (1) The first demonstrations of user-defined synthetic spectra in the 3-5 {micro}m wavelength regime based upon controlled deflection of individual grating elements in the Polychromator grating; (2) The first demonstration of gas detection by correlation spectroscopy using synthetic spectra generated by the Polychromator grating.

More Details

First passage failure: Analysis alternatives

Paez, Thomas L.

Most mechanical and structural failures can be formulated as first passage problems. The traditional approach to first passage analysis models barrier crossings as Poisson events. The crossing rate is established and used in the Poisson framework to approximate the no-crossing probability. While this approach is accurate in a number of situations, it is desirable to develop analysis alternatives for those situations where traditional analysis is less accurate and situations where it is difficult to estimate parameters of the traditional approach. This paper develops an efficient simulation approach to first passage failure analysis. It is based on simulation of segments of complex random processes with the Karhunen-Loeve expansion, use of these simulations to estimate the parameters of a Markov chain, and use of the Markov chain to estimate the probability of first passage failure. Some numerical examples are presented.

More Details

The impact of solution agglomeration on the deposition of self-assembled monolayers

Langmuir

Bunker, B.C.; Assink, Roger A.; Thomas, Michael L.; Hankins, M.G.; Voigt, James A.; Sipola, Diana L.; De Boer, Maarten P.; Gulley, Gerald L.

Self-assembled monolayers (SAMS) are commonly produced by immersing substrates in organic solutions containing trichlorosilane coupling agents. Unfortunately, such deposition solutions can also form alternate structures including inverse micelles and lamellar phases. The formation of alternate phases is one reason for the sensitivity of SAM depositions to factors such as the water content of the deposition solvent. If such phases are present, the performance of thin films used for applications such as minimization of friction and stiction in micromachines can be seriously compromised. Inverse micelle formation has been studied in detail for depositions involve 1H-, 1H-, 2H-, 2H-perfluorodecyltrichlorosilane (FDTS) in isooctane. Nuclear magnetic resonance experiments have been used to monitor the kinetics of hydrolysis and condensation reactions between water and FDTS. Light scattering experiments show that when hydrolyzed FDTS concentrations reach a critical concentration, there is a burst of nucleation to form high concentrations of spherical agglomerates. Atomic force microscopy results show that the agglomerates then deposit on substrate surfaces. Deposition conditions leading to monolayer formation involve using deposition times that are short relative to the induction time for agglomeration. After deposition, inverse micelles can be converted into lamellar or monolayer structures with appropriate heat treatments if surface concentrations are relatively low.

More Details

Scaling and optimization of the radiation temperature in dynamic hohlraums

Physics of Plasmas

Slutz, Stephen A.; Douglas, Melissa R.; Lash, Joel S.; Vesey, Roger A.; Chandler, Gordon A.; Nash, Thomas J.; Derzon, Mark S.

The authors have constructed a quasi-analytic model of the dynamic hohlraum. Solutions only require a numerical root solve, which can be done very quickly. Results of the model are compared to both experiments and full numerical simulations with good agreement. The computational simplicity of the model allows one to find the behavior of the hohlraum temperature as a function the various parameters of the system and thus find optimum parameters as a function of the driving current. The model is used to investigate the benefits of ablative standoff and axial convergence.

More Details

Accelerating technology transfer from federal laboratories to the private sector by industrial R and D collaborations - A new business model

Lombana, Cesar A.; Romig, Alton D.; Martinez, J.L.

Many important products and technologies were developed in federal laboratories and were driven initially by national needs and for federal applications. For example, the clean room technology that enhanced the growth of the semiconductor industry was developed at Sandia National Laboratories (SNL) decades ago. Similarly, advances in micro-electro-mechanical-systems (MEMS)--an important set of process technologies vital for product miniaturization--are occurring at SNL. Each of the more than 500 federal laboratories in the US, are sources of R and D that contributes to America's economic vitality, productivity growth and, technological innovation. However, only a fraction of the science and technology available at the federal laboratories is being utilized by industry. Also, federal laboratories have not been applying all the business development processes necessary to work effectively with industry in technology commercialization. This paper addresses important factors that federal laboratories, federal agencies, and industry must address to translate these under utilized technologies into profitable products in the industrial sector.

More Details

Temporal switching jitter in photoconductive switches

Mar, Alan M.; Loubriel, Guillermo M.; Zutavern, Fred J.; O'Malley, Martin W.; Helgeson, Wesley D.

This paper reports on a recent comparison made between the Air Force Research Laboratory (AFRL) gallium arsenide, optically-triggered switch test configuration and the Sandia National Laboratories (SNL) gallium arsenide, optically-triggered switch test configuration. The purpose of these measurements was to compare the temporal switch jitter times. It is found that the optical trigger laser characteristics are dominant in determining the PCSS jitter.

More Details

Sandia's straw ballot comments on the Security Version 1.1. specification

Tarman, Thomas D.

This contribution provides Sandia's strawballot comments for the Security Version l.l specification, STR-SEC-02.01. Two major comments are addressed here that pertain to potential problems with the use of the Security Association Section digital signature, and potential inconsistencies with the allocation of relative identifiers in the initiating security agent.

More Details

Modeling of lead-acid battery capacity loss in a photovoltaic application

Jungst, Rudolph G.

The authors have developed a model for the probabilistic behavior of a rechargeable battery acting as the energy storage component in a photovoltaic power supply system. Stochastic and deterministic models are created to simulate the behavior of the system components. The components are the solar resource, the photovoltaic power supply system, the rechargeable battery, and a load. One focus of this research is to model battery state of charge and battery capacity as a function of time. The capacity damage effect that occurs during deep discharge is introduced via a non-positive function of duration and depth of deep discharge events. Because the form of this function is unknown and varies with battery type, the authors model it with an artificial neural network (ANN) whose parameters are to be trained with experimental data. The battery capacity loss model will be described and a numerical example will be presented showing the predicted battery life under different PV system use scenarios.

More Details

Geographic resolution issues in RAM transportation risk analysis

RAMTRANS - Nuclear Technology Publishing

Mills, G.S.; Neuhauser, Sieglinde

Over the years that radioactive material (RAM) transportation risk estimates have been calculated using the RADTRAN code, demand for improved geographic resolution of route characteristics, especially density of population neighboring route segments, has led to code improvements that provide more specific route definition. With the advent of geographic information systems (GISs), the achievable resolution of route characteristics is theoretically very high. The authors have compiled population-density data in 1-kilometer increments for routes extending over hundreds of kilometers without impractical expenditures of time. Achievable resolution of analysis is limited, however, by the resolution of available data. U.S. Census data typically have 1-km or better resolution within densely-populated portions of metropolitan areas but census blocks are much larger in rural areas. Geographic resolution of accident-rate data, especially for heavy/combination trucks, are typically tabulated on a statewide basis. These practical realities cause one to ask what level(s) of resolution may be necessary for meaningful risk analysis of transportation actions on a state or interstate scale.

More Details

A case study in modeling company policy documents as a source of requirements

Trauth, Sharon L.

This paper describes an approach that was developed to produce structured models that graphically reflect the requirements contained within a text document. The document used in this research is a draft policy document governing business in a research and development environment. In this paper, the authors present a basic understanding of why this approach is needed, the techniques developed, lessons learned during modeling and analysis, and recommendations for future investigation. The modeling method applied on the policy document was developed as an extension to entity relationship (ER) diagrams, which built in some structural information typically associated with object-oriented techniques. This approach afforded some structure as an analysis tool, while remaining flexible enough to be used with the text document. It provided a visual representation that allowed further analysis and layering of the model to be done.

More Details

Sandia and the Waste Isolation Pilot Plant, 1974--1999

Mora, Carl J.

Engineers have learned to design and build big projects, which certainly describes the WIPP project, but also includes defense projects, highway networks, space exploration, the Internet, etc., through what has been called a messily complex embracing of contradictions. When something massive and complicated has to be built these days, it leads to a protracted political process in which every special interest makes a stand, lobbyists exert what influence they can, lawmakers bicker, contractors change things, Congress struggles with costs, environmentalists hold things up--and this is good. It may seem amazing that anything gets done, but when it does, everyone has had their say. It's an intensely democratic, even if expensive and time-consuming, process. The corporate historian of Sandia National Laboratories presents a unique background of the WIPP project and Sandia's part in it.

More Details

Improved PV system reliability results from surge evaluations at Sandia National Laboratories

Bonn, Russell H.; Gonzalez, Sigifredo G.

Electrical surges on ac and dc inverter power wiring and diagnostic cables have the potential to shorten the lifetime of power electronics. These surges may be caused by either nearby lightning or capacitor switching transients. This paper contains a description of ongoing surge evaluations of PV power electronics and surge mitigation hardware at Sandia.

More Details

A discussion on life-cycle costs of residential photovoltaic systems

Thomas, Michael G.; Cameron, Christopher P.

This paper discusses the characteristics and needed improvements/enhancements required for the expansion of the grid-tied residential power systems market. The purpose of the paper is to help establish a common understanding, between the technical community and the customers of the technology, of value and costs and what is required in the longer term for reaching the full potential of this application.

More Details

Twenty years of service at NBNM - Analysis of Spectrolab module

Quintana, Michael A.; King, David L.; Kratochvil, Jay A.

This study of adhesional strength and surface analysis of encapsulant and silicon cell samples from a Natural Bridges National Monument (NBNM) Spectrolab module is an attempt to understand from its success. The module was fabricated using polyvinyl butyral (PVB) as an encapsulant. The average adhesional shear strength of the encapsulant at the cell/encapsulant interface in this module was 4.51 MPa or {approximately} 18% lower than that in currently manufactured modules. Typical encapsulant surface composition was as follows: C 75.0 at.% O 23.2 at.%, and Si 1.6 at.%, with Ag {approximately}0.2 at.% and Pb {approximately} 0.5 at.% with some tin respectively over the grid lines and solder bond. Representative silicon cell surface composition was: K 1.4 at.%, C 20.8 at.%, Sn 0.94 at.%, O 15.1 at.%, Na 2.7 at.% and Si 59.0 at.%. The presence of tin detected on the silicon cell surface may be attributed to corrosion of solder bond. The module differs from typical contemporary modules in the use of PVB, metallic mesh type interconnection, and silicon oxide AR coating.

More Details

Module 30 year life: What does it mean and is it predictable-achievable?

King, David L.; Quintana, Michael A.

The authors define what they mean by a 30-year module life and the testing protocol that they believe is involved in achieving such a prediction. However, they do not believe that a universal test (or series of tests) will allow for such a prediction to be made. They can test for a lot of things, but they believe it is impossible to provide a 30-year certification for any PV module submitted for test. They explain their belief in this paper.

More Details

A database prototype has been developed to help understand costs in photovoltaic systems

Moore, Larry M.

High photovoltaic (PV) system costs hinder market growth. An approach to studying these costs has been developed using a database containing system, component and maintenance information. This data, which is both technical and non-technical in nature, is to be used to identify trends related to costs. A pilot database exists at this time and work is continuing. The results of this work may be used by the data owners to improve their operations with the goal of sharing non-attributable information with the public and industry at large. The published objectives of the DOE PV program are to accelerate the development of PV as a national and global energy option, as well as ensure US technology and global market leadership. The approach to supporting these objectives is to understand what drives costs in PV applications. This paper and poster session describe work-in-progress in the form of a database that will help identify costs in PV systems. In an effort to address DOE's Five-Year PV Milestones, a program was established in the summer of 1999 to study system costs in three PV applications--solar home lighting, water pumping, and grid-tied systems. This work began with a RFQ requesting data from these types of systems. Creating a partnership with industry and other system organizations such as Non-Government Organizations (NGOs) was the approach chosen to maintain a close time to the systems in the field. Nine participants were selected as partners, who provided data on their systems. Two activities are emphasized in this work. For the first, an iterative approach of developing baseline reliability and costs information with the participants was taken. This effort led to identifying typical components in these systems as well as the specific data (metrics) that would be needed in any analysis used to understand total systems costs.

More Details

IEEE Std 929-2000 - Background, implications and requirements

Stevens, John W.

The newly revised standard, IEEE Std 929-2000, has significant positive implications for those designing inverters for utility-interconnected PV systems and for designers and installers of such systems. A working group of roughly 20 people, including PV systems designers/installers, PV inverter manufacturers and utility engineers spent close to 3 years developing a standard that would be useful and beneficial to all.

More Details

Salinas - An implicit finite element structural dynamics code developed for massively parallel platforms

Reese, Garth M.; Driessen, Brian D.; Alvin, Kenneth F.; Day, David M.

As computational needs for structural finite element analysis increase, a robust implicit structural dynamics code is needed which can handle millions of degrees of freedom in the model and produce results with quick turn around time. A parallel code is needed to avoid limitations of serial platforms. Salinas is an implicit structural dynamics code specifically designed for massively parallel platforms. It computes the structural response of very large complex structures and provides solutions faster than any existing serial machine. This paper gives a current status of Salinas and uses demonstration problems to show Salinas' performance.

More Details

100% foundry compatible packaging and full wafer release and die separation technique for surface micromachined devices

Oliver, Andrew D.; Matzke, C.M.

A completely foundry compatible chip-scale package for surface micromachines has been successfully demonstrated. A pyrex (Corning 7740) glass cover is placed over the released surface micromachined die and anodically bonded to a planarized polysilicon bonding ring. Electrical feedthroughs for the surface micromachine pass underneath the polysilicon sealing ring. The package has been found to be hermetic with a leak rate of less than 5 x 10{sup {minus}8} atm cm{sup {minus}3}/s. This technology has applications in the areas of hermetic encapsulation and wafer level release and die separation.

More Details

Nanofabricated SiO{sub 2}-Si-SiO{sub 2} Resonant Tunneling Diodes

Fleming, J.G.; Chow, Kai-Cheung; Lin, Shawn-Yu L.

Resonance Tunneling Diodes (RTDs) are devices that can demonstrate very high-speed operation. Typically they have been fabricated using epitaxial techniques and materials not consistent with standard commercial integrated circuits. The authors report here the first demonstration of SiO{sub 2}-Si-SiO{sub 2} RTDs. These new structures were fabricated using novel combinations of silicon integrated circuit processes.

More Details

Control of the interparticle spacing in gold nanoparticle superlattices

Journal of Physical Chem B

Martin, James E.; Wilcoxon, Jess P.; Odinek, Judy G.; Provencio, P.N.

The authors have investigated the formation of 2-D and 3-D superlattices of Au nanoclusters synthesized in nonionic inverse micelles, and capped with alkyl thiol ligands, with alkane chains ranging from C{sub 6} to C1{sub 18}. The thiols are found to play a significant role in the ripening of these nanoclusters, and in the formation of superlattices. Image processing techniques were developed to reliably extract from transmission electron micrographs (TEMs) the particle size distribution, and information about the superlattice domains and their boundaries. The latter permits one to compute the intradomain vector pair correlation function, from which one can accurately determine the lattice spacing and the coherent domain size. From these data the gap between the particles in the coherent domains can be determined as a function of the thiol chain length. It is found that as the thiol chain length increases, the nanoclusters become more polydisperse and larger, and the gaps between particles within superlattice domains increases. Annealing studies at elevated temperatures confirm nanocluster ripening. Finally, the effect of the particle gaps on physical properties is illustrated by computing the effective dielectric constant, and it is shown that the gap size now accessible in superlattices is rather large for dielectric applications.

More Details

Calibration of parallel kinematic devices using sequential determination of kinematic parameters

IEEE - Journal of Robotic Systems

Jokiel, Bernhard J.; Bieg, Lothar F.

In PKM Machines, the Cartesian position and orientation of the tool point carried on the platform is obtained from a kinematic model of the particular machine. Accurate positioning of these machines relies on the accurate knowledge of the parameters of the kinematic model unique to the particular machine. The parameters in the kinematic model include the spatial locations of the joint centers on the machine base and moving platform, the initial strut lengths, and the strut displacements. The strut displacements are readily obtained from sensors on the machine. However, the remaining kinematic parameters (joint center locations, and initial strut lengths) are difficult to determine when these machines are in their fully assembled state. The size and complexity of these machines generally makes it difficult and somewhat undesirable to determine the remaining kinematic parameters by direct inspection such as in a coordinate measuring machine. In order for PKMs to be useful for precision positioning applications, techniques must be developed to quickly calibrate the machine by determining the kinematic parameters without disassembly of the machine. A number of authors have reported techniques for calibration of PKMs (Soons, Masory, Zhuang et. al., Ropponen). In two other papers, the authors have reported on work recently completed by the University of Florida and Sandia National Laboratories on calibration of PKMs, which describes a new technique to sequentially determine the kinematic parameters of an assembled parallel kinematic device. The technique described is intended to be used with a spatial coordinate measuring device such as a portable articulated CMM measuring arm (Romer, Faro, etc.), a Laser Ball Bar (LBB), or a laser tracker (SMX< API, etc.). The material to be presented is as follows: (1) methods to identify the kinematic parameters of 6--6 variant Stewart platform manipulators including joint center locations relative to the workable and spindle nose, and initial strut lengths, (2) and example of the application of the method, and (3) results from the application of the technique.

More Details

Soil sample preparation using microwave digestion for uranium analysis

Mohagheghi, Amir H.; Preston, Rose T.

A new sample preparation procedure has been developed for digestion of soil samples for uranium analysis. The technique employs a microwave oven digestion system to digest the sample and to prepare it for separation chemistry and analysis. The method significantly reduces the volume of acids used, eliminates a large fraction of acid vapor emissions, and speeds up the analysis time. The samples are analyzed by four separate techniques: Gamma Spectrometry, Alpha Spectroscopy using the open digestion method, Kinetic Phosphorescence Analysis (KPA) using open digestion, and KPA by Microwave digestion technique. The results for various analytical methods are compared and used to confirm the validity of the new procedure. The details of the preparation technique along with its benefits are discussed.

More Details

Solventless sol-gel chemistry through ring-opening polymerization of bridged disilaoxacyclopentanes

Rahimian, Kamyar R.; Loy, Douglas A.

Disilaoxacyclopentanes have proven to be excellent precursors to sol-gel type materials. These materials have shown promise as precursors for encapsulation and microelectronics applications. The polymers are highly crosslinked and are structurally similar to traditional sol-gels, but unlike typical sol-gels they are prepared without the use of solvents and water, they have low VOC's and show little shrinkage during processing.

More Details

Monte Carlo simulation of ferroelectric domain structure: Electrostatic and elastic strain energy contributions

Ferroelectrics

Potter, Barrett G.; Tuttle, Bruce T.; Tikare, Veena T.

A lattice-Monte Carlo approach was developed to simulate ferroelectric domain behavior. The model utilizes a Hamiltonian for the total energy that includes electrostatic terms (involving dipole-dipole interactions, local polarization gradients, and applied electric field), and elastic strain energy. The contributions of these energy components to the domain structure and to the overall applied field response of the system were examined. In general, the model exhibited domain structure characteristics consistent with those observed in a tetragonally distorted ferroelectric. Good qualitative agreement between the appearance of simulated electrical hysteresis loops and those characteristic of real ferroelectric materials was found.

More Details

Density functional theory of simple polymers in a slit pore: 3. Surface tension

The Journal of Chemical Physics

Curro, John G.; Van Swol, Frank

In a previous study of tangent site chains near a surface, the inhomogeneous density profiles were found through Density Functional theory. In the current study, the surface tensions of these systems are found from the results of the previous study through a thermodynamic integration. The calculated surface tensions are then compared to those found directly through computer simulation. Both the surface tension and surface excess for polymeric systems are shown to qualitatively differ from those of atomic systems, although certain similarities are seen at high densities.

More Details

Topological characterization of safe coordinated vehicle motions

Kaufman, Stephen G.

This paper characterizes the homotopy properties and the global topology of the space of positions of vehicles which are constrained to travel without intersecting on a network of paths. The space is determined by the number of vehicles and the network. Paths in the space correspond to simultaneous non-intersecting motions of all vehicles. The authors therefore focus on computing the homotopy type of the space, and show how to do so in the general case. Understanding the homotopy type of the space is the central issue in controlling the vehicles, as it gives a complete description of the distinct ways that vehicles may move safely on the network. The authors exhibit graphs, products of graphs, and amalgamations of products of graphs that are homotopy equivalent to the full configuration space, and are far simpler than might be expected. The results indicate how a control system for such a network of vehicles (such as a fleet of automatically guided vehicles guided by wires buried in a factory floor) may be implemented.

More Details

Microfabricated planar preconcentrator

Manginell, Ronald P.; Frye-Mason, Gregory C.; Kottenstette, Richard K.; Lewis, Patrick R.; Wong, Chungnin C.

Front-end sampling or preconcentration is an important analytical technique and will be crucial to the success of many microanalytical detector systems. This paper describes a microfabricated planar preconcentrator ideal for integration with microanalytical systems. The device incorporates a surfactant templated sol gel adsorbent layer deposited on a microhotplate to achieve efficient analyte collection, and rapid, efficient thermal desorption. Concentration factors of 100--500 for dimethyl methyl phosphonate (DMMP) have been achieved with this device, while selectivities to interfering compounds greater than a factor of 25 have been demonstrated. Device performance will be compared with conventional preconcentrators, and the effects of system flow rate, flow channel geometry and collection time will be presented. A physical model of adsorption/desorption from the device will be reviewed and compared with experiment, while numerical simulation of flow over the device will be described.

More Details

A comparison of methods for 3D target localization from seismic and acoustic signatures

Elbring, Gregory J.; Garbin, H.D.; Ladd, Mark D.

An important application of seismic and acoustic unattended ground sensors (UGS) is the estimation of the three dimensional position of an emitting target. Seismic and acoustic data derived from UGS systems provide the taw information to determine these locations, but can be processed and analyzed in a number of ways using varying amounts of auxiliary information. Processing methods to improve arrival time picking for continuous wave sources and methods for determining and defining the seismic velocity model are the primary variables affecting the localization accuracy. Results using field data collected from an underground facility have shown that using an iterative time picking technique significantly improves the accuracy of the resulting derived target location. Other processing techniques show little advantage over simple crosscorrelation along in terms of accuracy, but may improve the ease with which time picks can be made. An average velocity model found through passive listening or a velocity model determined from a calibration source near the target source both result in similar location accuracies, although the use of station correction severely increases the location error.

More Details

Consideration of nuclear criticality when disposing of transuranic waste at the Waste Isolation Pilot Plant

Rechard, Robert P.; Sanchez, Lawrence C.; Stockman, C.T.

Based on general arguments presented in this report, nuclear criticality was eliminated from performance assessment calculations for the Waste Isolation Pilot Plant (WIPP), a repository for waste contaminated with transuranic (TRU) radioisotopes, located in southeastern New Mexico. At the WIPP, the probability of criticality within the repository is low because mechanisms to concentrate the fissile radioisotopes dispersed throughout the waste are absent. In addition, following an inadvertent human intrusion into the repository (an event that must be considered because of safety regulations), the probability of nuclear criticality away from the repository is low because (1) the amount of fissile mass transported over 10,000 yr is predicted to be small, (2) often there are insufficient spaces in the advective pore space (e.g., macroscopic fractures) to provide sufficient thickness for precipitation of fissile material, and (3) there is no credible mechanism to counteract the natural tendency of the material to disperse during transport and instead concentrate fissile material in a small enough volume for it to form a critical concentration. Furthermore, before a criticality would have the potential to affect human health after closure of the repository--assuming that a criticality could occur--it would have to either (1) degrade the ability of the disposal system to contain nuclear waste or (2) produce significantly more radioisotopes than originally present. Neither of these situations can occur at the WIPP; thus, the consequences of a criticality are also low.

More Details

South Asia Water Resources Workshop: An effort to promote water quality data sharing in South Asia

Rajen, Gaurav R.; Biringer, Kent L.; Betsill, J.D.

To promote cooperation in South Asia on environmental research, an international working group comprised of participants from Bangladesh, India, Nepal, Pakistan, Sri Lanka, and the US convened at the Soaltee Hotel in Kathmandu, Nepal, September 12 to 14, 1999. The workshop was sponsored in part by the Cooperative Monitoring Center (CMC) at Sandia National Laboratories in Albuquerque, New Mexico, through funding provided by the Department of Energy (DOE) Office of Nonproliferation and National Security. The CMC promotes collaborations among scientists and researchers in regions throughout the world as a means of achieving common regional security objectives. In the long term, the workshop organizers and participants are interested in the significance of regional information sharing as a means to build confidence and reduce conflict. The intermediate interests of the group focus on activities that might eventually foster regional management of some aspects of water resources utilization. The immediate purpose of the workshop was to begin the implementation phase of a project to collect and share water quality information at a number of river and coastal estuary locations throughout the region. The workshop participants achieved four objectives: (1) gaining a better understanding of the partner organizations involved; (2) garnering the support of existing regional organizations promoting environmental cooperation in South Asia; (3) identifying sites within the region at which data is to be collected; and (4) instituting a data and information collection and sharing process.

More Details

Silicon purification melting for photovoltaic applications

Van Den Avyle, James A.; Ho, Pauline H.; Gee, J.M.

The availability of polysilicon feedstock has become a major issue for the photovoltaic (PV) industry in recent years. Most of the current polysilicon feedstock is derived from rejected material from the semiconductor industry. However, the reject material can become scarce and more expensive during periods of expansion in the integrated-circuit industry. Continued rapid expansion of the PV crystalline-silicon industry will eventually require a dedicated supply of polysilicon feedstock to produce solar cells at lower costs. The photovoltaic industry can accept a lower purity polysilicon feedstock (solar-grade) compared to the semiconductor industry. The purity requirements and potential production techniques for solar-grade polysilicon have been reviewed. One interesting process from previous research involves reactive gas blowing of the molten silicon charge. As an example, Dosaj et all reported a reduction of metal and boron impurities from silicon melts using reactive gas blowing with 0{sub 2} and Cl{sub 2}. The same authors later reassessed their data and the literature, and concluded that Cl{sub 2}and 0{sub 2}/Cl{sub 2} gas blowing are only effective for removing Al, Ca, and Mg from the silicon melt. Researchers from Kawasaki Steel Corp. reported removal of B and C from silicon melts using reactive gas blowing with an 0{sub 2}/Ar plasma torch. Processes that purify the silicon melt are believed to be potentially much lower cost compared to present production methods that purify gas species.

More Details

Constitutive models for the Etchegoin Sands, Belridge Diatomite, and overburden formations at the Lost Hills oil field, California

Fossum, A.F.; Fredrich, Joanne T.

This report documents the development of constitutive material models for the overburden formations, reservoir formations, and underlying strata at the Lost Hills oil field located about 45 miles northwest of Bakersfield in Kern County, California. Triaxial rock mechanics tests were performed on specimens prepared from cores recovered from the Lost Hills field, and included measurements of axial and radial stresses and strains under different load paths. The tested intervals comprise diatomaceous sands of the Etchegoin Formation and several diatomite types of the Belridge Diatomite Member of the Monterey Formation, including cycles both above and below the diagenetic phase boundary between opal-A and opal-CT. The laboratory data are used to drive constitutive parameters for the Extended Sandler-Rubin (ESR) cap model that is implemented in Sandia's structural mechanics finite element code JAS3D. Available data in the literature are also used to derive ESR shear failure parameters for overburden formations. The material models are being used in large-scale three-dimensional geomechanical simulations of the reservoir behavior during primary and secondary recovery.

More Details

Raman study of lead zirconate titanate under uniaxial stress

Tallant, David T.; Simpson, Regina L.; Grazier, J.M.; Zeuch, David H.; Olson, Walter R.; Tuttle, Bruce T.

The authors used micro-Raman spectroscopy to monitor the ferroelectric (FE) to antiferroelectric (AFE) phase transition in PZT ceramic bars during the application of uniaxial stress. They designed and constructed a simple loading device, which can apply sufficient uniaxial force to transform reasonably large ceramic bars while being small enough to fit on the mechanical stage of the microscope used for Raman analysis. Raman spectra of individual grains in ceramic PZT bars were obtained as the stress on the bar was increased in increments. At the same time gauges attached to the PZT bar recorded axial and lateral strains induced by the applied stress. The Raman spectra were used to calculate an FE coordinate, which is related to the fraction of FE phase present. The authors present data showing changes in the FE coordinates of individual PZT grains and correlate these changes to stress-strain data, which plot the macroscopic evolution of the FE-to-AFE transformation. Their data indicates that the FE-to-AFE transformation does not occur simultaneously for all PZT grains but that grains react individually to local conditions.

More Details

Time resolved ion beam induced charge collection

Sexton, Frederick W.; Walsh, David S.; Doyle, Barney L.; Dodd, Paul E.

Under this effort, a new method for studying the single event upset (SEU) in microelectronics has been developed and demonstrated. Called TRIBICC, for Time Resolved Ion Beam Induced Charge Collection, this technique measures the transient charge-collection waveform from a single heavy-ion strike with a {minus}.03db bandwidth of 5 GHz. Bandwidth can be expanded up to 15 GHz (with 5 ps sampling windows) by using an FFT-based off-line waveform renormalization technique developed at Sandia. The theoretical time resolution of the digitized waveform is 24 ps with data re-normalization and 70 ps without re-normalization. To preserve the high bandwidth from IC to the digitizing oscilloscope, individual test structures are assembled in custom high-frequency fixtures. A leading-edge digitized waveform is stored with the corresponding ion beam position at each point in a two-dimensional raster scan. The resulting data cube contains a spatial charge distribution map of up to 4,096 traces of charge (Q) collected as a function of time. These two dimensional traces of Q(t) can cover a period as short as 5 ns with up to 1,024 points per trace. This tool overcomes limitations observed in previous multi-shot techniques due to the displacement damage effects of multiple ion strikes that changed the signal of interest during its measurement. This system is the first demonstration of a single-ion transient measurement capability coupled with spatial mapping of fast transients.

More Details

Characterization of Si nanostructures using internal quantum efficiency measurements

Ruby, Douglas S.

Hemispherical reflectance and internal quantum efficiency measurements have been employed to evaluate the response of Si nanostructured surfaces formed by using random and periodic reactive ion etching techniques. Random RIE-textured surfaces have demonstrated solar weighted reflectance of {approx} 3% over 300--1,200-nm spectral range even without the benefit of anti-reflection films. Random RIE-texturing has been found to be applicable over large areas ({approximately} 180 cm{sup 2}) of both single and multicrystalline Si surfaces. Due to the surface contamination and plasma-induced damage, RIE-textured surfaces did not initially provide increased short circuit current as expected from the enhanced absorption. Improved processing combined with wet-chemical damage removal etches resulted in significant improvement in the short circuit current with IQEs comparable to the random, wet-chemically textured surfaces. An interesting feature of the RIE-textured surfaces was their superior performance in the near IR spectral range. The response of RIE-textured periodic surfaces can be broadly classified into three distinct regimes. One-dimensional grating structures with triangular profiles are characterized by exceptionally low, polarization-independent reflective behavior. The reflectance response of such surfaces is similar to a graded-index anti-reflection film. The IQE response from these surfaces is severely degraded in the UV-Visible spectral region due to plasma-induced surface damage. One-dimensional grating structures with rectangular profiles exhibit spectrally selective absorptive behavior with somewhat similar IQE response. The third type of grating structure combines broadband anti-reflection behavior with significant IQE enhancement in 800--1,200-nm spectral region. The hemispherical reflectance of these 2D grating structures is comparable to random RIE-textured surfaces. The IQE enhancement in the long wavelength spectral region can be attributed to increased coupling into obliquely propagating transmitted diffracted orders inside the Si substrate. Random RIE texturing techniques are expected to find widespread commercial applicability in low-cost, large-area multicrystalline Si solar cells. Grating-texturing techniques are expected to find applications in thin-film and space solar cells.

More Details

Long term drift studies of Sandia H{sub 2} sensor in reducing atmospheres

Jenkins, Mark W.; Hughes, R.C.; Patel, Sanjay V.

A study of the drift in Pd/Ni alloy hydrogen sensitive resistor and transistor responses is presented. The sensors were monitored for a period of 6 months in a reducing atmosphere of 0.1% H{sub 2} in N{sub 2} with periodic calibration exposures. A comparison of a resistor film with an adhesion layer showed considerable improvement in diminishing the drift.

More Details

Computational methods for coupling microstructural and micromechanical materials response simulations

Holm, Elizabeth A.; Wellman, Gerald W.; Battaile, Corbett C.; Buchheit, Thomas E.; Fang, H.E.; Rintoul, Mark D.; Vedula, Venkata R.; Glass, Sarah J.; Knorovsky, Gerald A.; Neilsen, Michael K.

Computational materials simulations have traditionally focused on individual phenomena: grain growth, crack propagation, plastic flow, etc. However, real materials behavior results from a complex interplay between phenomena. In this project, the authors explored methods for coupling mesoscale simulations of microstructural evolution and micromechanical response. In one case, massively parallel (MP) simulations for grain evolution and microcracking in alumina stronglink materials were dynamically coupled. In the other, codes for domain coarsening and plastic deformation in CuSi braze alloys were iteratively linked. this program provided the first comparison of two promising ways to integrate mesoscale computer codes. Coupled microstructural/micromechanical codes were applied to experimentally observed microstructures for the first time. In addition to the coupled codes, this project developed a suite of new computational capabilities (PARGRAIN, GLAD, OOF, MPM, polycrystal plasticity, front tracking). The problem of plasticity length scale in continuum calculations was recognized and a solution strategy was developed. The simulations were experimentally validated on stockpile materials.

More Details

Grating light reflection spectroelectrochemistry for detection of trace amounts of aromatic hydrocarbons in water

Kelly, M.; Sweatt, W.C.; Kemme, S.A.; Blair, Dianna S.

Grating light reflection spectroscopy (GLRS) is an emerging technique for spectroscopic analysis and sensing. A transmission diffraction grating is placed in contact with the sample to be analyzed, and an incident light beam is directed onto the grating. At certain angles of incidence, some of the diffracted orders are transformed from traveling waves to evanescent waves. This occurs at a specific wavelength that is a function of the grating period and the complex index of refraction of the sample. The intensities of diffracted orders are also dependent on the sample's complex index of refraction. The authors describe the use of GLRS, in combination with electrochemical modulation of the grating, for the detection of trace amounts of aromatic hydrocarbons. The diffraction grating consisted of chromium lines on a fused silica substrate. The depth of the grating lines was 1 {micro}m, the grating period was 1 {micro}m, and the duty cycle was 50%. Since chromium was not suitable for electrochemical modulation of the analyte concentration, a 200 nm gold layer was deposited over the entire grating. This gold layer slightly degraded the transmission of the grating, but provided satisfactory optical transparency for the spectroelectrochemical experiments. The grating was configured as the working electrode in an electrochemical cell containing water plus trace amounts of the aromatic hydrocarbon analytes. The grating was then electrochemically modulated via cyclic voltammetry waveforms, and the normalized intensity of the zero order reflection was simultaneously measured. The authors discuss the lower limits of detection (LLD) for two analytes, 7-dimethylamino-1,2-benzophenoxazine (Meldola's Blue dye) and 2,4,6-trinitrotoluene (TNT), probed with an incident HeNe laser beam ({lambda} = 543.5 nm) at an incident angle of 52.5{degree}. The LLD for 7-dimethylamino-1,2-benzophenoxazine is approximately 50 parts per billion (ppb), while the LLD for TNT is approximately 50 parts per million (ppm). The possible factors contributing to the differences in LLD for these analytes are discussed. This is the final report for a Sandia National Laboratories Laboratory Directed Research and Development (LDRD) project conducted during fiscal years 1998 and 1999 (case number 3518.190).

More Details

A case study in working with cell-centered data

Crossno, Patricia J.

This case study provides examples of how some simple decisions the authors made in structuring their algorithms for handling cell-centered data can dramatically influence the results. Although they all know that these decisions produce variations in results, they think that they underestimate the potential magnitude of the differences. More importantly, the users of the codes may not be aware that these choices have been made or what they mean to the resulting visualizations of their data. This raises the question of whether or not these decisions are inadvertently distorting user interpretations of data sets.

More Details

The correct balance between analysis and test

Sound and Vibration

Smallwood, David O.

During the last 20 years there has been a tremendous increase in computational capabilities. It seems to accelerate every year. Models are now constructed with millions of degrees of freedom. Sandia National Laboratories recently computed modes and transient response for a 4,000,000 degree of freedom model. There is also an increase in the cost of testing as the unit price of test items increases and manpower costs escalate. One is reminded of Augustine's Laws, ``Simple systems are not feasible because they require infinite testing.'' Or conversely, extremely complex systems require no testing. In his discussion he uses data from actual systems to show how increasing complexity of systems appears to require less testing. A hundred dollar item required several thousand developments tests, where a ten million dollar item required a few tens of development tests. Of course, this results from the large increase in test costs caused in large part by the large cost of the test hardware that comes with increasing complexity. The complex system (costly) is coupled with the perceived need to reduce nonessential costs. At Sandia National Laboratories they are also faced with the prospect that some of the tests they ran in the past are not even feasible to run today.

More Details

Identifying and modeling safety hazards

Werner, Paul W.

The hazard model described in this paper is designed to accept data over the Internet from distributed databases. A hazard object template is used to ensure that all necessary descriptors are collected for each object. Three methods for combining the data are compared and contrasted. Three methods are used for handling the three types of interactions between the hazard objects.

More Details

Gravity-driven dense granular flows

Rhysical Review Letters

Grest, Gary S.; Silbert, Leonardo E.

The authors report and analyze the results of numerical studies of dense granular flows in two and three dimensions, using both linear damped springs and Hertzian force laws between particles. Chute flow generically produces a constant density profile that satisfies scaling relations suggestive of a Bagnold grain inertia regime. The type for force law has little impact on the behavior of the system. Failure is not initiated at the surface, consistent with the absence of surface flows and different principal stress directions at vs. below the surface.

More Details

An agent-based microsimulation of critical infrastructure systems

Barton, Dianne C.; Stamber, Kevin L.

US infrastructures provide essential services that support the economic prosperity and quality of life. Today, the latest threat to these infrastructures is the increasing complexity and interconnectedness of the system. On balance, added connectivity will improve economic efficiency; however, increased coupling could also result in situations where a disturbance in an isolated infrastructure unexpectedly cascades across diverse infrastructures. An understanding of the behavior of complex systems can be critical to understanding and predicting infrastructure responses to unexpected perturbation. Sandia National Laboratories has developed an agent-based model of critical US infrastructures using time-dependent Monte Carlo methods and a genetic algorithm learning classifier system to control decision making. The model is currently under development and contains agents that represent the several areas within the interconnected infrastructures, including electric power and fuel supply. Previous work shows that agent-based simulations models have the potential to improve the accuracy of complex system forecasting and to provide new insights into the factors that are the primary drivers of emergent behaviors in interdependent systems. Simulation results can be examined both computationally and analytically, offering new ways of theorizing about the impact of perturbations to an infrastructure network.

More Details

Commissioning a materials research laboratory

Savage, Gerald A.

This presentation covers the process of commissioning a new 150,000 sq. ft. research facility at Sandia National Laboratories. The laboratory being constructed is a showcase of modern design methods being built at a construction cost of less than $180 per sq. ft. This is possible in part because of the total commissioning activities that are being utilized for this project. The laboratory's unique approach to commissioning will be presented in this paper. The process will be followed through from the conceptual stage on into the actual construction portion of the laboratory. Lessons learned and cost effectiveness will be presented in a manner that will be usable for others making commissioning related decisions. Commissioning activities at every stage of the design will be presented along with the attributed benefits. Attendees will hear answers to the what, when, who, and why questions associated with commissioning of this exciting project.

More Details

A nondeterministic shock and vibration application using polynomial chaos expansions

Field, Richard V.; Red-Horse, John R.; Paez, Thomas L.

In the current study, the generality of the key underpinnings of the Stochastic Finite Element (SFEM) method is exploited in a nonlinear shock and vibration application where parametric uncertainty enters through random variables with probabilistic descriptions assumed to be known. The system output is represented as a vector containing Shock Response Spectrum (SRS) data at a predetermined number of frequency points. In contrast to many reliability-based methods, the goal of the current approach is to provide a means to address more general (vector) output entities, to provide this output as a random process, and to assess characteristics of the response which allow one to avoid issues of statistical dependence among its vector components.

More Details

Process maps for plasma spray. Part II: Deposition and properties

Gilmore, Delwyn L.; Neiser, Richard A.

This is the second paper of a two part series based on an integrated study carried out at the State University of New York at Stony Brook and Sandia National Laboratories. The goal of the study is the fundamental understanding of the plasma-particle interaction, droplet/substrate interaction, deposit formation dynamics and microstructure development as well as the deposit property. The outcome is science-based relationships, which can be used to link processing to performance. Molybdenum splats and coatings produced at 3 plasma conditions and three substrate temperatures were characterized. It was found that there is a strong mechanical/thermal interaction between droplet and substrate, which builds up the coatings/substrate adhesion. Hardness, thermal conductivity, and modulus increase, while oxygen content and porosity decrease with increasing particle velocity. Increasing deposition temperature resulted in dramatic improvement in coating thermal conductivity and hardness as well as increase in coating oxygen content. Indentation reveals improved fracture resistance for the coatings prepared at higher deposition temperature. Residual stress was significantly affected by deposition temperature, although not significant by particle energy within the investigated parameter range. Coatings prepared at high deposition temperature with high-energy particles suffered considerably less damage in wear tests. Possible mechanisms behind these changes are discussed within the context of relational maps which are under development.

More Details

A tutorial on design analysis for random vibration

The Shock and Vibration Digest

Reese, Garth M.; Field, Richard V.; Segalman, Daniel J.

The von Mises stress is often used as the metric for evaluating design margins, particularly for structures made of ductile materials. While computing the von Mises stress distribution in a structural system due to a deterministic load condition may be straightforward, difficulties arise when considering random vibration environments. As a result, alternate methods are used in practice. One such method involves resolving the random vibration environment to an equivalent static load. This technique, however, is only appropriate for a very small class of problems and can easily be used incorrectly. Monte Carlo sampling of numerical realizations that reproduce the second order statistics of the input is another method used to address this problem. This technique proves computationally inefficient and provides no insight as to the character of the distribution of von Mises stress. This tutorial describes a new methodology to investigate the design reliability of structural systems in a random vibration environment. The method provides analytic expressions for root mean square (RMS) von Mises stress and for the probability distributions of von Mises stress which can be evaluated efficiently and with good numerical precision. Further, this new approach has the important advantage of providing the asymptotic properties of the probability distribution. A brief overview of the theoretical development of the methodology is presented, followed by detailed instructions on how to implement the technique on engineering applications. As an example, the method is applied to a complex finite element model of a Global Positioning Satellite (GPS) system. This tutorial presents an efficient and accurate methodology for correctly applying the von Mises stress criterion to complex computational models. The von Mises criterion is the traditional method for determination of structural reliability issues in industry.

More Details

Three-phase material distribution measurements in a vertical flow using gamma-densitometry tomography and electrical-impedance tomography

International Journal of Multiphase Flow

George, Darin L.; Shollenberger, K.A.; Torczynski, J.R.; O'Hern, Timothy J.

Experiments are presented in which electrical-impedance tomography (EIT) and gamma-densitometry tomography (GDT) measurements were combined to simultaneously measure the solid, liquid, and gas radial distributions in a vertical three-phase flow. The experimental testbed was a 19.05-cm diameter bubble column in which gas is injected at the bottom and exits out the top while the liquid and solid phases recirculate. The gas phase was air and the liquid phase was deionized water with added electrolytes. Four different particle classes were investigated for the solid phase: 40--100 {micro}m and 120--200 {micro}m glass beads (2.41 g/cm{sup 3}), and 170--260 {micro}m and 200--700 {micro}m polystyrene beads (1.04 g/cm{sup 3}). Superficial gas velocities of 3 to 30 cm/s and solid volume fractions up to 0.30 were examined. For all experimental conditions investigated, the gas distribution showed only a weak dependence on both particle size and density. Average gas volume fraction as a function of superficial gas velocity can be described to within {+-} 0.04 by curve passing through the center of the data. For most cases the solid particle appeared to be radically uniformly dispersed in the liquid.

More Details

Automated analysis of failure event data

Campbell, James E.; Thompson, Bruce M.

This paper focuses on fully automated analysis of failure event data in the concept and early development stage of a semiconductor-manufacturing tool. In addition to presenting a wide range of statistical and machine-specific performance information, algorithms have been developed to examine reliability growth and to identify major contributors to unreliability. These capabilities are being implemented in a new software package called Reliadigm. When coupled with additional input regarding repair times and parts availability, the analysis software also provides spare parts inventory optimization based on genetic optimization methods. The type of question to be answered is: If this tool were placed with a customer for beta testing, what would be the optimal spares kit to meet equipment reliability goals for the lowest cost? The new algorithms are implemented in Windows{reg_sign} software and are easy to apply. This paper presents a preliminary analysis of failure event data from three IDEA machines currently in development. The paper also includes an optimal spare parts kit analysis.

More Details

Security services negotiation through OAM cells

Tarman, Thomas D.

As described in contribution AF99-0335, it is interesting that new security services and mechanisms are allowed to be negotiated during a connection in progress. To do that, new ''negotiation OAM cells'' dedicated to security should be defined, as well as some acknowledgment cells allowing negotiation OAM cells to be exchanged reliably. Remarks which were given at the New Orleans meeting regarding those cell formats are taken into account. This contribution presents some baseline text describing the format of the negotiation and acknowledgment cells, and the using of those cells. All the modifications brought to the specifications are reversible using the Word tools.

More Details

A DOE-STD-3009 hazard and accident analysis methodology for non-reactor nuclear facilities

Mahn, Jeffrey A.; Walker, Sharon A.

This paper demonstrates the use of appropriate consequence evaluation criteria in conjunction with generic likelihood of occurrence data to produce consistent hazard analysis results for nonreactor nuclear facility Safety Analysis Reports (SAR). An additional objective is to demonstrate the use of generic likelihood of occurrence data as a means for deriving defendable accident sequence frequencies, thereby enabling the screening of potentially incredible events (<10{sup {minus}6} per year) from the design basis accident envelope. Generic likelihood of occurrence data has been used successfully in performing SAR hazard and accident analyses for two nonreactor nuclear facilities at Sandia National Laboratories. DOE-STD-3009-94 addresses and even encourages use of a qualitative binning technique for deriving and ranking nonreactor nuclear facility risks. However, qualitative techniques invariably lead to reviewer requests for more details associated with consequence or likelihood of occurrence bin assignments in the test of the SAR. Hazard analysis data displayed in simple worksheet format generally elicits questions about not only the assumptions behind the data, but also the quantitative bases for the assumptions themselves (engineering judgment may not be considered sufficient by some reviewers). This is especially true where the criteria for qualitative binning of likelihood of occurrence involves numerical ranges. Oftentimes reviewers want to see calculations or at least a discussion of event frequencies or failure probabilities to support likelihood of occurrence bin assignments. This may become a significant point of contention for events that have been binned as incredible. This paper will show how the use of readily available generic data can avoid many of the reviewer questions that will inevitably arise from strictly qualitative analyses, while not significantly increasing the overall burden on the analyst.

More Details

Effect of surface steps on the microstructure of lateral composition modulation

Applied Physics Letters

Follstaedt, D.M.; Reno, J.L.; Jones, E.D.; Lee, Stephen R.

Growth of InAs/AlAs short-period superlattices on appropriately miscut (001) InP substrates is shown to alter the microstructure of composition modulation from a 2D organization of short compositionally enriched wires to a single dominant modulation direction and wire lengths up to {approximately}1 {micro}m. The effects of miscut are interpreted in terms of surface step orientation and character. The material is strongly modulated and exhibits intense optical emission. The 1D modulations appear potentially useful for new devices that take advantage of the preferred direction formed in the growth plane.

More Details

Mechanisms of transition-metal gettering in silicon

Journal of Applied Physics

Myers, S.M.

The atomic process, kinetics, and equilibrium thermodynamics underlying the gettering of transition-metal impurities in Si are reviewed from a mechanistic perspective. Methods for mathematical modeling of gettering are reviewed and illustrated. Needs for further research are discussed.

More Details

Formation and diffusion of S-decorated clusters on Cu(111)

Physical Review Letters

Feibelman, Peter J.

Because of their strong internal bonding, S-decorated Cu trimers are a likely agent of S-enhanced Cu transport between islands on Cu(111). According to ab-initio calculations, excellent healing of dangling Cu valence results in an ad-Cu{sub 3}S{sub 3} formation energy of only {approximately}0.28 eV, compared to 0.79 eV for a self-adsorbed Cu atom, and a diffusion barrier {le}0.35 eV.

More Details

Nonplanarity and the protonation behavior of porphyrins

Chemical Communications

Shelnutt, John A.

{sup 1}H NMR studies of the protonation of highly nonplanar porphyrins with strong acids reveal the presence of the previously elusive monocation, and show that its stability can be related to the amount of saddle distortion induced by protonation; the amount of saddle distortion for a porphyrin dication is also found to correlate well with the rate of intermolecular proton transfer.

More Details

Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells

Journal of Electrochemical Society

Chen, Ken S.

Two-phase flow and transport of reactants and products in the air cathode of proton exchange membrane (PEM) fuel cells is studied analytically and numerically. Four regimes of water distribution and transport are classified by defining three threshold current densities and a maximum current density. They correspond to first appearance of liquid water at the membrane/cathode interface, extension of the gas-liquid two-phase zone to the cathode/channel interface, saturated moist air exiting the gas channel, and complete consumption of oxygen by the electrochemical reaction. When the cell operates above the first threshold current density, liquid water appears and a two-phase zone forms within the porous cathode. A two-phase, multi-component mixture model in conjunction with a finite-volume-based computational fluid dynamics (CFD) technique is applied to simulate the cathode operation in this regime. The model is able to handle the situation where a single-phase region co-exists with a two-phase zone in the air cathode. For the first time, the polarization curve as well as water and oxygen concentration distributions encompassing both single- and two-phase regimes of the air cathode are presented. Capillary action is found to be the dominant mechanism for water transport inside the two-phase zone. The liquid water saturation within the cathode is predicted to reach 6.3% at 1.4 A/cm{sup 2}.

More Details

Copper gettering by aluminum precipitates in aluminum-implanted silicon

Journal of Applied Physics

Peterscn, G.A.; Myers, S.M.

Copper in Si is shown to be strongly gettered by Al-rich precipitates formed by implanting Al to supersaturation and followed by annealing. At temperatures ranging from 600 to 800 C a layer containing Al precipitates is found to getter Cu from Cu silicide located on the opposite side of a 0.25-mm Si wafer, indicating a substantially lower chemical potential for the Cu in the molten-A1 phase. Cu gettering proceeds rapidly until an atomic ratio of approximately 2 Cu atoms to 1 Al atom is reached in the precipitated Al region, after which the gettering process slows. Redistribution of Cu from one Al-rich layer to another at low Cu concentrations demonstrates that a segregation-type gettering mechanism is operating. Cu gettering occurs primarily in the region containing the precipitated Al rather than the region where the Al is entirely substitutional.

More Details

VUV absorption spectroscopy measurements of the role of fast neutral atoms in high-power gap breakdown

Physical Review E

Bailey, James E.; Cuneo, M.E.; Lake, Patrick W.; Nash, Thomas J.; Noack, Donald D.

The maximum power achieved in a wide variety of high-power devices, including electron and ion diodes, z pinches, and microwave generators, is presently limited by anode-cathode gap breakdown. A frequently-discussed hypothesis for this effect is ionization of fast neutral atoms injected throughout the anode-cathode gap during the power pulse. The authors describe a newly-developed diagnostic tool that provides the first direct test of this hypothesis. Time-resolved vacuum-ultraviolet absorption spectroscopy is used to directly probe fast neutral atoms with 1 mm spatial resolution in the 10 mm anode-cathode gap of the SABRE 5 MV, 1 TW applied-B ion diode. Absorption spectra collected during Ar RF glow discharges and with CO{sub 2} gas fills confirm the reliability of the diagnostic technique. Throughout the 50--100 ns ion diode pulses no measurable neutral absorption is seen, setting upper limits of 0.12--1.5 x 10{sup 14} cm{sup {minus}3} for ground state fast neutral atom densities of H, C, N, O, F. The absence of molecular absorption bands also sets upper limits of 0.16--1.2 x 10{sup 15} cm{sup {minus}3} for common simple molecules. These limits are low enough to rule out ionization throughout the gap as a breakdown mechanism. This technique can now be applied to quantify the role of neutral atoms in other high-power devices.

More Details

Demand Activated Manufacturing Architecture (DAMA) supply chain collaboration development methodology

Petersen, Marjorie B.; Chapman, Leon D.

The Demand Activated Manufacturing Architecture (DAMA) project during the last five years of work with the U.S. Integrated Textile Complex (retail, apparel, textile, and fiber sectors) has developed an inter-enterprise supply chain collaboration development methodology. The goal of this methodology is to enable a supply chain to work more efficiently and competitively. The outcomes of this methodology include: (1) A definitive description and evaluation of the role of business cultures and supporting business organizational structures in either inhibiting or fostering change to a more competitive supply chain; (2) ``As-Is'' and proposed ``To-Be'' supply chain business process models focusing on information flows and decision-making; and (3) Software tools that enable and support a transition to a more competitive supply chain, which results form a business driven rather than technologically driven approach to software design. This methodology development will continue in FY00 as DAMA engages companies in the soft goods industry in supply chain research and implementation of supply chain collaboration.

More Details

GaAsSb/InGaAs type-II quantum wells for long-wavelength lasers on GaAs substrates

Journal of Vacuum Science and Technology B

Klem, John F.; Spahn, Olga B.; Kurtz, S.R.; Fritz, I.J.; Choquette, K.D.

The authors have investigated the properties of GaAsSb/InGaAs type-II bilayer quantum well structures grown by molecule beam epitaxy for use in long-wavelength lasers on GaAs substrates. Structures with layer, strains and thicknesses designed to be thermodynamically stable against dislocation formation exhibit room-temperature photoluminescence at wavelengths as long as 1.43 {mu}m. The photoluminescence emission wavelength is significantly affected by growth temperature and the sequence of layer growth (InGaAs/GaAsSb vs GaAsSb/InGaAs), suggesting that Sb and/or In segregation results in non-ideal interfaces under certain growth conditions. At low injection currents, double heterostructure lasers with GaAsSb/InGaAs bilayer quantum well active regions display electroluminescence at wavelengths comparable to those obtained in photoluminescence, but at higher currents the electroluminescence shifts to shorter wavelengths. Lasers have been obtained with threshold current densities as low as 120 A/cm{sup 2} at 1.17 {mu}m, and 2.1 kA/cm{sup 2} at 1.21 {mu}m.

More Details

Some remarks on antenna response in a reverberation chamber

IEEE Transaction Electromagnetic Capabilities

Warne, Larry K.

The simple formula, {l_angle}P{sub r}{r_angle}=(E{sub o}{sup 2}/{eta})({lambda}{sup 2}/8{pi}), for the received power of an antenna with a matched load in an over-moded cavity actually holds for an antenna of any shape and size. This can be seen from the close connection between the correlation tensor of the cavity field at two different points and the imaginary part of the free-space dyadic Green's function.

More Details

Assessing the disturbed rock zone (DRZ) around a 655 meter vertical shaft in salt using ultrasonic waves: An update

Hardy, Robert D.; Holcomb, David J.

An array of ultrasonic transducers was constructed consisting of three identical arrays at various depths in an air intake shaft at the Waste Isolation Pilot Plant (WIPP). Each array consists of transducers permanently installed in three holes arranged in an L shape. An active array, created by appropriate arrangement of the transducers and selection of transmitter-receiver pairs, allows the measurement of transmitted signal velocities and amplitudes (for attenuation studies) along 216 paths parallel, perpendicular and tangential to the shaft walls. Transducer positions were carefully surveyed, allowing absolute velocity measurements. Installation occurred over a period of about two years beginning in early 1989, with nearly continuous operation since that time, resulting in a rare, if not unique, record of the spatial and temporal variability of damage development around an underground opening. This paper reports results from the last two years of operation, updating the results reported by Holcomb, 1999. Results will be related to the damage, due to microcracking, required to produce the observed changes. It is expected that the results will be useful to other studies of the long-term deformation characteristics of salt.

More Details

Growth of compaction bands: A new deformation mode for porous rock

Science Journal

Olsson, William A.; Holcomb, David J.

Compaction bands are thin, tabular zones of grain breakage and reduced porosity that are found in sandstones. These structures may form due to tectonic stresses or as a result of local stresses induced during production of fluids from wells, resulting in barriers to fluid (oil, gas, water) movement in sandstone reservoirs. To gain insight into the formation of compaction bands the authors have produced them in the laboratory. Acoustic emission locations were used to define and track the thickness of compaction bands throughout the stress history during axisymmetric compression experiments. Narrow zones of intense acoustic emission, demarcating the boundaries between the uncompacted and compacted regions were found to develop. Unexpectedly, these boundaries moved at velocities related to the fractional porosity reduction across the boundary and to the imposed specimen compression stress. This appears to be a previously unrecognized, fundamental mode of deformation of a porous, granular material subjected to compressive loading with significant implications for the production of hydrocarbons.

More Details

Hands-free operation of a small mobile robot

Amai, Wendy; Fahrenholtz, Jill C.; Leger, Chris

The Intelligent Systems and Robotics Center of Sandia National laboratories has an ongoing research program in advanced user interfaces. As part of this research, promising new transduction devices, particularly hands-free devices, are being explored for the control of mobile and floor-mounted robotic systems. Brainwave control has been successfully demonstrated by other researchers in a variety of fields. In the research described here, Sandia developed and demonstrated a proof-of-concept brainwave-controlled mobile robot system. Preliminary results were encouraging. Additional work required to turn this into a reliable. fieldable system for mobile robotic control is identified. Used in conjunction with other controls, brainwave control could be an effective control method in certain circumstances.

More Details

Sensitivity and uncertainty analysis of a polyurethane foam decomposition model

Hobbs, Michael L.; Robinson, David G.

Sensitivity/uncertainty analyses are not commonly performed on complex, finite-element engineering models because the analyses are time consuming, CPU intensive, nontrivial exercises that can lead to deceptive results. To illustrate these ideas, an analytical sensitivity/uncertainty analysis is used to determine the standard deviation and the primary factors affecting the burn velocity of polyurethane foam exposed to firelike radiative boundary conditions. The complex, finite element model has 25 input parameters that include chemistry, polymer structure, and thermophysical properties. The response variable was selected as the steady-state burn velocity calculated as the derivative of the burn front location versus time. The standard deviation of the burn velocity was determined by taking numerical derivatives of the response variable with respect to each of the 25 input parameters. Since the response variable is also a derivative, the standard deviation is essentially determined from a second derivative that is extremely sensitive to numerical noise. To minimize the numerical noise, 50-micron elements and approximately 1-msec time steps were required to obtain stable uncertainty results. The primary effect variable was shown to be the emissivity of the foam.

More Details

TEM investigation of U{sup 6+} and Re{sup 7+} reduction by Desulfovibrio desulfuricans, a sulfate-reducing bacterium

Zhang, Pengchu Z.; Wang, Yifeng

Uranium and its fission product Tc in aerobic environment will be in the forms of UO{sub 2}{sup 2+} and TcO{sub 4}{sup {minus}}. Reduced forms of tetravalent U and Tc are sparingly soluble. As determined by transmission electron microscopy, the reduction of uranyl acetate by immobilized cells of Desulfovibrio desulfuricans results in the production of black uraninite nanocrystals precipitated outside the cell. Some nanocrystals are associated with outer membranes of the cell as revealed from cross sections of these metabolic active sulfate-reducing bacteria. The nanocrystals have an average diameter of 5 nm and have anhedral shape. The reduction of Re{sup 7+} by cells of Desulfovibrio desulfuricans is fast in media containing H{sub 2} an electron donor, and slow in media containing lactic acid. It is proposed that the cytochrome in these cells has an important role in the reduction of uranyl and Re{sup 7+} is (a chemical analogue for Tc{sup 7+}) through transferring an electron from molecular hydrogen or lactic acid to the oxyions of UO{sub 2}{sup 2+} and TcO{sub 4}{sup {minus}}.

More Details

Demand Activated Manufacturing Architecture (DAMA) model for supply chain collaboration

Chapman, Leon D.; Petersen, Marjorie B.

The Demand Activated Manufacturing Architecture (DAMA) project during the last five years of work with the U.S. Integrated Textile Complex (retail, apparel, textile, and fiber sectors) has developed an inter-enterprise architecture and collaborative model for supply chains. This model will enable improved collaborative business across any supply chain. The DAMA Model for Supply Chain Collaboration is a high-level model for collaboration to achieve Demand Activated Manufacturing. The five major elements of the architecture to support collaboration are (1) activity or process, (2) information, (3) application, (4) data, and (5) infrastructure. These five elements are tied to the application of the DAMA architecture to three phases of collaboration - prepare, pilot, and scale. There are six collaborative activities that may be employed in this model: (1) Develop Business Planning Agreements, (2) Define Products, (3) Forecast and Plan Capacity Commitments, (4) Schedule Product and Product Delivery, (5) Expedite Production and Delivery Exceptions, and (6) Populate Supply Chain Utility. The Supply Chain Utility is a set of applications implemented to support collaborative product definition, forecast visibility, planning, scheduling, and execution. The DAMA architecture and model will be presented along with the process for implementing this DAMA model.

More Details

Security issues at the Department of Energy and records management

Nusbaum, Anna W.

In order to discuss the connection between security issues within the Department of Energy and records management, the author covers a bit of security history and talks about what she calls ``the Amazing Project''. Initiated in late May 1999, it was to be a tri-laboratory (Lawrence Livermore National Laboratory of Livermore, California, Los Alamos National Laboratory of Los Alamos, New Mexico, and Sandia National Laboratories of Albuquerque, New Mexico, and Livermore, California) project. The team that formed was tasked to develop the best set of security solutions that still enabled weapon mission work to get done and the security solutions were to be the same set for everyone. The amazing project was called ''The Integrated Security Management Project'', or ''ISecM' for short. She'll describe why she thinks this project was so amazing and what it accomplished. There's a bit of sad news about the project, but then she'll move onto discuss what was learned at Sandia as a result of the project and what they're currently doing in records management.

More Details

Effect of Mg ionization efficiency on performance of Npn AlGaN/GaN heterojunction bipolar transistors

Applied Physics Letters

Chang, Ping-Chih; Baca, A.G.

A drift-diffusion transport model has been used to examine the performance capabilities of AlGaN/GaN Npn heterojunction bipolar transistors (HBTs). The Gummel plot from the first GaN-based HBT structure recently demonstrated is adjusted with simulation by using experimental mobility and lifetime reported in the literature. Numerical results have been explored to study the effect of the p-type Mg doping and its incomplete ionization in the base. The high base resistance induced by the deep acceptor level is found to be the cause of limiting current gain values. Increasing the operating temperature of the device activates more carriers in the base. An improvement of the simulated current gain by a factor of 2 to 4 between 25 and 300 C agrees well with the reported experimental results. A preliminary analysis of high frequency characteristics indicates substantial progress of predicted rf performances by operating the device at higher temperature due to a reduced extrinsic base resistivity.

More Details

Monolithic GaAs surface acoustic wave chemical microsensor array

Hietala, Vincent M.; Casalnuovo, Stephen A.; Heller, Edwin J.; Wendt, J.R.; Frye-Mason, Gregory C.; Baca, A.G.

A four-channel surface acoustic wave (SAW) chemical sensor array with associated RF electronics is monolithically integrated onto one GaAs IC. The sensor operates at 690 MHz from an on-chip SAW based oscillator and provides simple DC voltage outputs by using integrated phase detectors. This sensor array represents a significant advance in microsensor technology offering miniaturization, increased chemical selectivity, simplified system assembly, improved sensitivity, and inherent temperature compensation.

More Details

Natural attenuation assessment of multiple VOCs in a deep vadose zone

Miller, David R.

The fate of six volatile organic compounds (VOC) in a 150-meter deep vadose zone was examined in support of a RCRA Corrective Measures Study of the Chemical Waste Landfill at Sandia National Laboratories, Albuquerque, New Mexico. The study focused on the modeling of potential future transport of the VOCs to exposure media upon the completion of two separate voluntary corrective measures--soil vapor extraction and landfill excavation--designed to significantly reduce contaminant levels in subsurface soils. modeling was performed with R-UNSAT, a finite-difference simulator that was developed by the U.S. Geological Survey. R-UNSAT facilitated a relatively unique and comprehensive assessment of vapor transport because it (1) simulated the simultaneous movement of all six VOCs, taking into account each constituent's diffusion coefficient as affected by its mole fraction within a mixture of chemicals, and (2) permitted simultaneous assessment of risk to human health via volatilization (air) and drinking water (groundwater) pathways. Modeling results suggested that monitored natural attenuation would represent a viable remedial alternative at the landfill after both voluntary corrective measures were completed.

More Details

Active sensors for health monitoring of aging aerospace structures

Redmond, James M.; Roach, D.; Rackow, Kirk

A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (NM) impedance technique are sighted and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high-frequency EIM impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acoustic-ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens, (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

More Details

Recent plant studies using Victoria 2.0

Bixler, Nathan E.; Gasser, Ronald D.

VICTORIA 2.0 is a mechanistic computer code designed to analyze fission product behavior within the reactor coolant system (RCS) during a severe nuclear reactor accident. It provides detailed predictions of the release of radioactive and nonradioactive materials from the reactor core and transport and deposition of these materials within the RCS and secondary circuits. These predictions account for the chemical and aerosol processes that affect radionuclide behavior. VICTORIA 2.0 was released in early 1999; a new version VICTORIA 2.1, is now under development. The largest improvements in VICTORIA 2.1 are connected with the thermochemical database, which is being revised and expanded following the recommendations of a peer review. Three risk-significant severe accident sequences have recently been investigated using the VICTORIA 2.0 code. The focus here is on how various chemistry options affect the predictions. Additionally, the VICTORIA predictions are compared with ones made using the MELCOR code. The three sequences are a station blackout in a GE BWR and steam generator tube rupture (SGTR) and pump-seal LOCA sequences in a 3-loop Westinghouse PWR. These sequences cover a range of system pressures, from fully depressurized to full system pressure. The chief results of this study are the fission product fractions that are retained in the core, RCS, secondary, and containment and the fractions that are released into the environment.

More Details

Gravity destabilized non-wetting phase invasion in macro-heterogeneous porous media: Near pore scale macro modified invasion percolation simulation of experiments

Water Resources Research

Glass, Robert J.; Conrad, Stephen H.; Yarrington, Lane Y.

The authors reconceptualize macro modified invasion percolation (MMIP) at the near pore (NP) scale and apply it to simulate the non-wetting phase invasion experiments of Glass et al [in review] conducted in macro-heterogeneous porous media. For experiments where viscous forces were non-negligible, they redefine the total pore filling pressure to include viscous losses within the invading phase as well as the viscous influence to decrease randomness imposed by capillary forces at the front. NP-MMIP exhibits the complex invasion order seen experimentally with characteristic alternations between periods of gravity stabilized and destabilized invasion growth controlled by capillary barriers. The breaching of these barriers and subsequent pore scale fingering of the non-wetting phase is represented extremely well as is the saturation field evolution, and total volume invaded.

More Details

Visualization of surfactant enhanced NAPL mobilization and solubilization in a two-dimensional micromodel

Water Resources Research

Glass, Robert J.

Surfactant-enhanced aquifer remediation is an emerging technology for aquifers contaminated with nonaqueous phase liquids (NAPLs). A two-dimensional micromodel and image capture system were applied to observe NAPL mobilization and solubilization phenomena. In each experiment, a common residual NAPL field was established, followed by a series of mobilization and solubilization experiments. Mobilization floods included pure water floods with variable flow rates and surfactant floods with variations in surfactant formulations. At relatively low capillary numbers (N{sub ca}<10{sup {minus}3}), the surfactant mobilization floods resulted in higher NAPL saturations than for the pure water flood, for similar N{sub ca}.These differences in macroscopic saturations are explained by differences in micro-scale mobilization processes. Solubilization of the residual NAPL remaining after the mobilization stage was dominated by the formation of dissolution fingers, which produced nonequilibrium NAPL solubilization. A macroemulsion phase also as observed to form spontaneously and persist during the solubilization stage of the experiments.

More Details

On the continuum-scale simulation of gravity-driven fingers with hysteretic Richards equation: Trucation error induced numerical artifacts

Water Resources Research

Eliassi, Mehdi E.; Glass, Robert J.

The authors consider the ability of the numerical solution of Richards equation to model gravity-driven fingers. Although gravity-driven fingers can be easily simulated using a partial downwind averaging method, they find the fingers are purely artificial, generated by the combined effects of truncation error induced oscillations and capillary hysteresis. Since Richards equation can only yield a monotonic solution for standard constitutive relations and constant flux boundary conditions, it is not the valid governing equation to model gravity-driven fingers, and therefore is also suspect for unsaturated flow in initially dry, highly nonlinear, and hysteretic media where these fingers occur. However, analysis of truncation error at the wetting front for the partial downwind method suggests the required mathematical behavior of a more comprehensive and physically based modeling approach for this region of parameter space.

More Details

{sup 17}O NMR investigation of oxidative degradation in polymers under gamma-irradiation

Radiation Physics and Chemistry

Alam, Todd M.; Celina, Mathias C.; Assink, Roger A.; Clough, Roger L.; Gillen, Kenneth T.

The {gamma}-irradiated-oxidation of pentacontane (C{sub 50}H{sub 102}) and the polymer polyisoprene was investigated as a function of oxidation level using {sup 17}O nuclear magnetic resonance (NMR) spectroscopy. It is demonstrated that by using {sup 17}O labeled O{sub 2} gas during the {gamma}-irradiation process, details about the oxidative degradation mechanisms can be directly obtained from the analysis of the {sup 17}O NMR spectra. Production of carboxylic acids is the primary oxygen-containing functionality during the oxidation of pentacontane, while ethers and alcohols are the dominant oxidation product observed for polyisoprene. The formation of ester species during the oxidation process is very minor for both materials, with water also being produced in significant amounts during the radiolytic oxidation of polyisoprene. The ability to focus on the oxidative component of the degradation process using {sup 17}O NMR spectroscopy demonstrates the selectivity of this technique over more conventional approaches.

More Details

Making NEPA more effective and economical for the new millennium

Environmental Practice Journal

Wolff, Theodore A.

This paper focuses on a ten-element strategy for streamlining the NEPA process in order to achieve the Act's objectives while easing the considerable burden on agencies, the public, and the judicial system. In other words, this paper proposes a strategy for making NEPA work better and cost less. How these ten elements are timed and implemented is critical to any successful streamlining. The strategy elements discussed in this paper, in no particular order of priority, are as follows: (1) integrate the NEPA process with other environmental compliance and review procedures; (2) accelerate the decision time for determining the appropriate level of NEPA documentation; (3) conduct early and thorough internal EIS (or EA) scoping before public scoping or other public participation begins; (4) organize and implement public scoping processes that are more participatory than confrontational; (5) maintain an up-to-date compendium of environmental baseline information; (6) prepare more comprehensive, broad-scope umbrella EISs that can be used effectively for tiering; (7) encourage preparation of annotated outlines with detailed guidance that serve as a road map for preparation of each EIS or EA; (8) decrease the length and complexity of highly technical portions of NEPA documents; (9) increase and systematize NEPA compliance outreach, training, and organizational support; and (10) work diligently to influence the preparation of better organized, shorter, and more readable NEPA documents.

More Details

Developing collaborative environments - A Holistic software development methodology

Petersen, Marjorie B.; Mitchiner, John L.

Sandia National Laboratories has been developing technologies to support person-to-person collaboration and the efforts of teams in the business and research communities. The technologies developed include knowledge-based design advisors, knowledge management systems, and streamlined manufacturing supply chains. These collaborative environments in which people can work together sharing information and knowledge have required a new approach to software development. The approach includes an emphasis on the requisite change in business practice that often inhibits user acceptance of collaborative technology. Leveraging the experience from this work, they have established a multidisciplinary approach for developing collaborative software environments. They call this approach ``A Holistic Software Development Methodology''.

More Details

Ultrathin aluminum oxide films: Al-sublattice structure and the effect of substrate on ad-metal adhesion

Surface Science

Jennison, Dwight R.; Bogicevic, Alexander B.

First principles density-functional slab calculations are used to study 5 {angstrom} (two O-layer) Al{sub 2}O{sub 3} films on Ru(0001) and Al(111). Using larger unit cells than in a recent study, it is found that the lowest energy stable film has an even mix of tetrahedral (t) and octahedral (o) site Al ions, and thus most closely resembles the {kappa}-phase of bulk alumina. Here, alternating zig-zag rows of t and o occur within the surface plane, resulting in a greater average lateral separation of the Al-ions than with pure t or o. A second structure with an even mix of t and o has also been found, consisting of alternating stripes. These patterns mix easily, can exist in three equivalent directions on basal substrates, and can also be displaced laterally, suggesting a mechanism for a loss of long-range order in the Al-sublattice. While the latter would cause the film to appear amorphous in diffraction experiments, local coordination and film density are little affected. On a film supported by rigid Ru(0001), overlayers of Cu, Pd, and Pt bind similarly as on bulk truncated {alpha}-Al{sub 2}O{sub 3}(0001). However, when the film is supported by soft Al(111), the adhesion of Cu, Pd, and Pt metal overlayers is significantly increased: Oxide-surface Al atoms rise so only they contact the overlayer, while substrate Al metal atoms migrate into the oxide film. Thus the binding energy of metal overlayers is strongly substrate dependent, and these numbers for the above Pd-overlayer systems bracket a recent experimentally derived value for a film on NiAl(110).

More Details

A nonplanar porphyrin-based receptor molecule for chiral amine ligands

Journal of Chemical Society, Chemical Communication

Shelnutt, John A.

A novel porphyrin-based receptor molecule for chiral amine ligands is described in which nonplanarity of the porphyrin macrocycle is used to orient the ligand and to enhance porphyrin-ligand interactions. The porphyrin macrocycle provides a versatile platform upon which to build elaborate superstructures, and this feature coupled with a rich and well-developed synthetic chemistry has led to the synthesis of many elegant models of heme protein active sites and numerous porphyrin-based receptor molecules. One design feature which is not usually considered in the design of porphyrin-based receptor molecules is nonplanarity of the porphyrin ring, although there are a few systems such as the pyridine sensitive Venus Flytrap and the chirality-memory molecule which illustrate that nonplanar porphyrin-based receptors can display unique and interesting behavior. Given the novel properties of these receptors and the continuing interest in the effects of nonplanarity on the properties of porphyrins the authors decided to investigate in more detail the potential applications of nonplanarity in the design of porphyrin-based receptors. Herein, they describe the design, synthesis, and characterization of a new kind of nonplanar porphyrin-based receptor molecule for chiral amines.

More Details

Synthesis and unusual properties of the first 2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetraalkylporphyrin

Chemical Society, Chemical Communications

Shelnutt, John A.

The new perhalogenated porphyrin 2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetrakis(trifluoromethyl)porphinato-nickel(II) exhibits several striking features, including an extremely ruffled macrocycle with a very short Ni-N distance, an unusually red-shifted optical spectrum, and, surprisingly, hindered rotation of the meso-trifluoromethyl substituents ({Delta}G{sub 278}{sup +} = 47 kJ/mol).

More Details

Longevity improvement of optically activated, high gain GaAs photoconductive semiconductor switches

Mar, Alan M.; Loubriel, Guillermo M.; Zutavern, Fred J.; O'Malley, Martin W.; Helgeson, Wesley D.; Brown, Darwin J.; Hjalmarson, Harold P.; Baca, A.G.

The longevity of high gain GaAs photoconductive semiconductor switches (PCSS) has been extended to over 100 million pulses at 23A, and over 100 pulses at 1kA. This is achieved by improving the ohmic contacts by doping the semi-insulating GaAs underneath the metal, and by achieving a more uniform distribution of contact wear across the entire switch by distributing the trigger light to form multiple filaments. This paper will compare various approaches to doping the contacts, including ion implantation, thermal diffusion, and epitaxial growth. The device characterization also includes examination of the filament behavior using open-shutter, infra-red imaging during high gain switching. These techniques provide information on the filament carrier densities as well as the influence that the different contact structures and trigger light distributions have on the distribution of the current in the devices. This information is guiding the continuing refinement of contact structures and geometries for further improvements in switch longevity.

More Details

Use of self-assembled monolayers to control interface bonding in a model study of interfacial fracture

Kent, Michael S.; Yim, Hyun Y.; Matheson, Aaron J.; Reedy, Earl D.

The relationship between the nature and spatial distribution of fundamental interfacial interactions and fracture stress/fracture toughness of a glassy adhesive-inorganic solid joint is not understood. This relationship is important from the standpoint of designing interfacial chemistry sufficient to provide the level of mechanical strength required for a particular application. In addition, it is also important for understanding the effects of surface contamination. Different types of contamination, or different levels of contamination, likely impact joint strength in different ways. Furthermore, the relationship is also important from the standpoint of aging. If interfacial chemical bonds scission over time due to the presence of a contaminant such as water, or exposure to UV, etc, the relationship between joint strength/fracture toughness and interface strength is important for predicting reliability with time. A fundamental understanding of the relationship between joint strength and fundamental interfacial interactions will give insight into these issues.

More Details

Structure within thin epoxy films revealed by solvent swelling: A neutron reflectivity study

Kent, Michael S.; Yim, Hyun Y.; McNamara, William F.

The focus of this work is the structure within highly crosslinked, two component epoxy films. The authors examine variations in crosslink density within thin epoxy films on silicon substrates by solvent swelling. The method is based on the fact that the equilibrium volume fraction of a swelling solvent is strongly dependent upon the local crosslink density. The authors examine the volume fraction profile of the good solvent nitrobenzene through the epoxy films by neutron reflection. Isotopic substitution is used to provide contrast between the epoxy matrix and the swelling solvent.

More Details

Results of the Boeing/DOE DECC Phase 1 stirling engine project

Diver, Richard B.

Phase I of Boeing Company/DOE Dish Engine Critical Component (DECC) Project started in April of 1998 and was completed in 1999. The Phase I objectives, schedule, and test results are presented in this paper. These data shows the power, energy, and mirror performance are comparable to that when the hardware was first manufactured 15 years ago. During the Phase I and initial Phase II test period the on-sun system accumulated over 3,800 hours of solar-powered operating time, accumulated over 4,500 hours of concentrator solar tracking time, and generated over 50,000 kWh of grid-compatible electrical energy. The data also shows that the system was available 95 {percent} of the time when the sun's insolation level was above approximately 300 w/m{sup 2}, and achieved a daily energy efficiency between 20{percent} and 26{percent}. A second concentrator was refurbished during Phase I and accumulated over 2,200 hours of solar track time. A second Stirling engine operated 24 hours a day in a test cell in Sweden and accumulated over 6,000 test hours. Discussion of daily operation shows no major problems encountered during the testing that would prevent commercialization of the technology. Further analysis of the test data shows that system servicing with hydrogen, coolant and lubricating oil should not be a major O and M cost.

More Details

Solar Two: A successful power tower demonstration project

Reilly, Hugh E.; Pacheco, James E.

Solar Two, a 10MWe power tower plant in Barstow, California, successfully demonstrated the production of grid electricity at utility-scale with a molten-salt solar power tower. This paper provides an overview of the project, from inception in 1993 to closure in the spring of 1999. Included are discussions of the goals of the Solar Two consortium, the planned-vs.-actual timeline, plant performance, problems encountered, and highlights and successes of the project. The paper concludes with a number of key results of the Solar Two test and evaluation program.

More Details

Robotic system for glovebox size reduction

Kwok, Kwan S.; McDonald, Michael J.

The Intelligent Systems and Robotics Center (ISRC) at Sandia National Laboratories (SNL) is developing technologies for glovebox size reduction in the DOE nuclear complex. A study was performed for Kaiser-Hill (KH) at the Rocky Flats Environmental Technology Site (RFETS) on the available technologies for size reducing the glovebox lines that require size reduction in place. Currently, the baseline approach to these glovebox lines is manual operations using conventional mechanical cutting methods. The study has been completed and resulted in a concept of the robotic system for in-situ size reduction. The concept makes use of commercially available robots that are used in the automotive industry. The commercially available industrial robots provide high reliability and availability that are required for environmental remediation in the DOE complex. Additionally, the costs of commercial robots are about one-fourth that of the custom made robots for environmental remediation. The reason for the lower costs and the higher reliability is that there are thousands of commercial robots made annually, whereas there are only a few custom robots made for environmental remediation every year. This paper will describe the engineering analysis approach used in the design of the robotic system for glovebox size reduction.

More Details

Solar Two technology for Mexico

Revista Solar

Kolb, Gregory J.; Strachan, John W.

Solar power towers, based on molten salt technology, have been the subject of extensive research and development since the late 1970s. In the mid 1980s, small experimental plants were successfully fielded in the USA and France that demonstrated the feasibility of the concept at a 1 to 2 MW{sub e} scale. Systems analyses indicate this technology will be cost competitive with coal-fired power plants after scaling-up plant size to the 100 to 200 MW{sub e} range. To help bridge the scale-up gap, a 10 MW{sub e} demonstration project known as Solar Two, was successfully operated in California, USA from 1996 to 1999. The next logical step could be to scale-up further and develop a 30 MW{sub e} project within the country of Mexico. The plant could be built by an IPP industrial consortium consisting of USA's Boeing and Bechtel Corporations, combined with Mexican industrial and financial partners. Plausible technical and financial characteristics of such a ``Solar-Two-type'' Mexican project are discussed in this paper.

More Details

CTBT integrated verification system evaluation model supplement

Edenburn, Michael W.; Bunting, Marcus L.; Payne, Arthur C.; Trost, Lawrence C.

Sandia National Laboratories has developed a computer based model called IVSEM (Integrated Verification System Evaluation Model) to estimate the performance of a nuclear detonation monitoring system. The IVSEM project was initiated in June 1994, by Sandia's Monitoring Systems and Technology Center and has been funded by the U.S. Department of Energy's Office of Nonproliferation and National Security (DOE/NN). IVSEM is a simple, ''top-level,'' modeling tool which estimates the performance of a Comprehensive Nuclear Test Ban Treaty (CTBT) monitoring system and can help explore the impact of various sensor system concepts and technology advancements on CTBT monitoring. One of IVSEM's unique features is that it integrates results from the various CTBT sensor technologies (seismic, in sound, radionuclide, and hydroacoustic) and allows the user to investigate synergy among the technologies. Specifically, IVSEM estimates the detection effectiveness (probability of detection), location accuracy, and identification capability of the integrated system and of each technology subsystem individually. The model attempts to accurately estimate the monitoring system's performance at medium interfaces (air-land, air-water) and for some evasive testing methods such as seismic decoupling. The original IVSEM report, CTBT Integrated Verification System Evaluation Model, SAND97-25 18, described version 1.2 of IVSEM. This report describes the changes made to IVSEM version 1.2 and the addition of identification capability estimates that have been incorporated into IVSEM version 2.0.

More Details

Prediction of metal sorption in soils

Westrich, Henry R.; Anderson Jr., Harold L.; Arthur, Sara E.; Brady, Patrick V.; Cygan, Randall T.; Liang, Jianjie; Zhang, Pengchu Z.

Radionuclide transport in soils and groundwaters is routinely calculated in performance assessment (PA) codes using simplified conceptual models for radionuclide sorption, such as the K{sub D} approach for linear and reversible sorption. Model inaccuracies are typically addressed by adding layers of conservativeness (e.g., very low K{sub D}'s), and often result in failed transport predictions or substantial increases in site cleanup costs. Realistic assessments of radionuclide transport over a wide range of environmental conditions can proceed only from accurate, mechanistic models of the sorption process. They have focused on the sorption mechanisms and partition coefficients for Cs{sup +}, Sr{sup 2+} and Ba{sup 2+} (analogue for Ra{sup 2+}) onto iron oxides and clay minerals using an integrated approach that includes computer simulations, sorption/desorption measurements, and synchrotron analyses of metal sorbed substrates under geochemically realistic conditions. Sorption of Ba{sup 2+} and Sr{sup 2+} onto smectite is strong, pH-independent, and fully reversible, suggesting that cation exchange at the interlayer basal sites controls the sorption process. Sr{sup 2+} sorbs weakly onto geothite and quartz, and is pH-dependent. Sr{sup 2+} sorption onto a mixture of smectite and goethite, however, is pH- and concentration dependent. The adsorption capacity of montmorillonite is higher than that of goethite, which may be attributed to the high specific surface area and reaction site density of clays. The presence of goethite also appears to control the extent of metal desorption. In-situ, extended X-ray absorption fine structure (EXAFS) spectroscopic measurements for montmorillonite and goethite show that the first shell of adsorbed Ba{sup 2+} is coordinated by 6 oxygens. The second adsorption shell, however, varies with the mineral surface coverage of adsorbed Ba{sup 2+} and the mineral substrate. This suggests that Ba{sup 2+} adsorption on mineral surfaces involves more than one mechanism and that the stability of sorbed complexes will be affected by substrate composition. Molecular modeling of Ba{sup 2+} sorption on goethite and Cs{sup +} sorption on kaolinite surfaces were performed using molecular dynamics techniques with improved Lennard-Jones interatomic potentials under periodic boundary conditions. Ba{sup 2+} was observed to have a preference for inner sphere sorption onto goethite, with the (101) and (110) surfaces representing the controlling sorption surfaces for bulk K{sub D} measurements. Large-scale simulations of Cs{sup +} sorption on kaolinite (1000's of atoms) provide a statistical basis for the theoretical evaluation and prediction of Cs{sup +} K{sub D} values. Results suggest the formation of a strong inner sphere complex for Cs{sup +} on the kaolinite edge surfaces and a weakly bound outer sphere complex on the hydroxyl basal surface.

More Details

Integrating Records Management (RM) and Information Technology (IT)

Nusbaum, Anna W.; Cusimano, Linda J.

Records Managers are continually exploring ways to integrate their services with those offered by Information Technology-related professions to capitalize on the advantages of providing customers a total solution to managing their records and information. In this day and age, where technology abounds, there often exists a fear on the part of records management that this integration will result in a loss of identity and the focus of one's own mission - a fear that records management may become subordinated to the fast-paced technology fields. They need to remember there is strength in numbers and it benefits RM, IT, and the customer when they can bring together the unique offerings each possess to reach synergy for the benefit of all the corporations. Records Managers, need to continually strive to move ''outside the records management box'', network, expand their knowledge, and influence the IT disciplines to incorporate the concept of ''management'' into their customer solutions.

More Details

A 3-D SAR approach to IFSAR processing

Doerry, Armin; Bickel, Douglas L.

Interferometric SAR (IFSAR) can be shown to be a special case of 3-D SAR image formation. In fact, traditional IFSAR processing results in the equivalent of merely a super-resolved, under-sampled, 3-D SAR image. However, when approached as a 3-D SAR problem, a number of IFSAR properties and anomalies are easily explained. For example, IFSAR decorrelation with height is merely ordinary migration in 3-D SAR. Consequently, treating IFSAR as a 3-D SAR problem allows insight and development of proper motion compensation techniques and image formation operations to facilitate optimal height estimation. Furthermore, multiple antenna phase centers and baselines are easily incorporated into this formulation, providing essentially a sparse array in the elevation dimension. This paper shows the Polar Format image formation algorithm extended to 3 dimensions, and then proceeds to apply it to the IFSAR collection geometry. This suggests a more optimal reordering of the traditional IFSAR processing steps.

More Details

Construction of file database management

Merrill, Kyle J.; Cieslak, Wendy R.

This work created a database for tracking data analysis files from multiple lab techniques and equipment stored on a central file server. Experimental details appropriate for each file type are pulled from the file header and stored in a searchable database. The database also stores specific location and self-directory structure for each data file. Queries can be run on the database according to file type, sample type or other experimental parameters. The database was constructed in Microsoft Access and Visual Basic was used for extraction of information from the file header.

More Details

Decision analysis for the selection of tank waste retrieval technology

Davis, F.J.

The objective of this report is to supplement the C-104 Alternatives Generation and Analysis (AGA) by providing a decision analysis for the alternative technologies described therein. The decision analysis used the Multi-Attribute Utility Analysis (MUA) technique. To the extent possible information will come from the AGA. Where data are not available, elicitation of expert opinion or engineering judgment is used and reviewed by the authors of the AGA. A key element of this particular analysis is the consideration of varying perspectives of parties interested in or affected by the decision. The six alternatives discussed are: sluicing; sluicing with vehicle mounted transfer pump; borehole mining; vehicle with attached sluicing nozzle and pump; articulated arm with attached sluicing nozzle; and mechanical dry retrieval. These are evaluated using four attributes, namely: schedule, cost, environmental impact, and safety.

More Details

Surfactant-modified diffusion on transition-metal surfaces (reprinted with the addition of the appendices)

Feibelman, Peter J.; Kellogg, Gary L.

Wanting to convert surface impurities from a nuisance to a systematically applicable nano-fabrication tool, the authors have sought to understand how such impurities affect self-diffusion on transition-metal surfaces. Their field-ion microscope experiments reveal that in the presence of surface hydrogen, self-diffusion on Rh(100) is promoted, while on Pt(100), not only is it inhibited, but its mechanism changes. First-principles calculations aimed at learning how oxygen fosters perfect layerwise growth on a growing Pt(111) crystal contradict the idea in the literature that it does so by directly promoting transport over Pt island boundaries. The discovery that its real effect is to burn off adventitious adsorbed carbon monoxide demonstrates the predictive value of state-of-the-art calculation methods.

More Details

Salvo: Seismic imaging software for complex geologies

Ober, Curtis C.; Womble, David E.

This report describes Salvo, a three-dimensional seismic-imaging software for complex geologies. Regions of complex geology, such as overthrusts and salt structures, can cause difficulties for many seismic-imaging algorithms used in production today. The paraxial wave equation and finite-difference methods used within Salvo can produce high-quality seismic images in these difficult regions. However this approach comes with higher computational costs which have been too expensive for standard production. Salvo uses improved numerical algorithms and methods, along with parallel computing, to produce high-quality images and to reduce the computational and the data input/output (I/O) costs. This report documents the numerical algorithms implemented for the paraxial wave equation, including absorbing boundary conditions, phase corrections, imaging conditions, phase encoding, and reduced-source migration. This report also describes I/O algorithms for large seismic data sets and images and parallelization methods used to obtain high efficiencies for both the computations and the I/O of seismic data sets. Finally, this report describes the required steps to compile, port and optimize the Salvo software, and describes the validation data sets used to help verify a working copy of Salvo.

More Details

Quantitative tomographic measurements of opaque multiphase flows

George, Darin L.; Torczynski, J.R.; Shollenberger, K.A.; O'Hern, Timothy J.

An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDT and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.

More Details

The use of carbon fibers in wind turbine blade design: A SERI-8 blade example

Veers, Paul S.

The benefit of introducing carbon fibers in a wind turbine blade was evaluated. The SERI-8 wind turbine blade was used as a baseline for study. A model of the blade strength and stiffness properties was created using the 3D-Beam code; the predicted geometry and structural properties were validated against available data and static test results. Different enhanced models, which represent different volumes of carbon fibers in the blade, were also studied for two design options: with and without bend-twist coupling. Studies indicate that hybrid blades have excellent structural properties compared to the all-glass SERI-8 blade. Recurring fabrication costs were also included in the study. The cost study highlights the importance of the labor-cost to material-cost ratio in the cost benefits and penalties of fabrication of a hybrid glass and carbon blade.

More Details

Methodology for characterizing modeling and discretization uncertainties in computational simulation

Alvin, Kenneth F.; Oberkampf, William L.; Rutherford, Brian M.; Diegert, Kathleen V.

This research effort focuses on methodology for quantifying the effects of model uncertainty and discretization error on computational modeling and simulation. The work is directed towards developing methodologies which treat model form assumptions within an overall framework for uncertainty quantification, for the purpose of developing estimates of total prediction uncertainty. The present effort consists of work in three areas: framework development for sources of uncertainty and error in the modeling and simulation process which impact model structure; model uncertainty assessment and propagation through Bayesian inference methods; and discretization error estimation within the context of non-deterministic analysis.

More Details

Pinch me - I'm fusing! Fusion Power - what is it? What is a z pinch? And why are z-pinches a promising fusion power technology?

Science Fiction and Fact Magazine

Derzon, Mark S.

The process of combining nuclei (the protons and neutrons inside an atomic nucleus) together with a release of kinetic energy is called fusion. This process powers the Sun, it contributes to the world stockpile of weapons of mass destruction and may one day generate safe, clean electrical power. Understanding the intricacies of fusion power, promised for 50 years, is sometimes difficult because there are a number of ways of doing it. There is hot fusion, cold fusion and con-fusion. Hot fusion is what powers suns through the conversion of mass energy to kinetic energy. Cold fusion generates con-fusion and nobody really knows what it is. Even so, no one is generating electrical power for you and me with either method. In this article the author points out some basic features of the mainstream approaches taken to hot fusion power, as well as describe why z pinches are worth pursuing as a driver for a power reactor and how it may one day generate electrical power for mankind.

More Details

Computer aided differential diagnosis in emergency situations (CADDIES) system

Noel, William P.

This report presents an idea for a portable computerized differential diagnosis tool that could be utilized by a health care provider during an emergency situation. This radio frequency, networked, menu driven system would analyze various patient assessment parameters and make recommendations regarding possible diagnoses/treatment options outside the scope of suspicion of the health care provider. This system would serve as a repository for initial epidemiological data and assist the health care provider with spotting emerging trends.

More Details

Finite element meshing approached as a global minimization process

Witkowski, Walter R.; Jung, Joseph J.; Dohrmann, Clark R.; Leung, Vitus J.

The ability to generate a suitable finite element mesh in an automatic fashion is becoming the key to being able to automate the entire engineering analysis process. However, placing an all-hexahedron mesh in a general three-dimensional body continues to be an elusive goal. The approach investigated in this research is fundamentally different from any other that is known of by the authors. A physical analogy viewpoint is used to formulate the actual meshing problem which constructs a global mathematical description of the problem. The analogy used was that of minimizing the electrical potential of a system charged particles within a charged domain. The particles in the presented analogy represent duals to mesh elements (i.e., quads or hexes). Particle movement is governed by a mathematical functional which accounts for inter-particles repulsive, attractive and alignment forces. This functional is minimized to find the optimal location and orientation of each particle. After the particles are connected a mesh can be easily resolved. The mathematical description for this problem is as easy to formulate in three-dimensions as it is in two- or one-dimensions. The meshing algorithm was developed within CoMeT. It can solve the two-dimensional meshing problem for convex and concave geometries in a purely automated fashion. Investigation of the robustness of the technique has shown a success rate of approximately 99% for the two-dimensional geometries tested. Run times to mesh a 100 element complex geometry were typically in the 10 minute range. Efficiency of the technique is still an issue that needs to be addressed. Performance is an issue that is critical for most engineers generating meshes. It was not for this project. The primary focus of this work was to investigate and evaluate a meshing algorithm/philosophy with efficiency issues being secondary. The algorithm was also extended to mesh three-dimensional geometries. Unfortunately, only simple geometries were tested before this project ended. The primary complexity in the extension was in the connectivity problem formulation. Defining all of the interparticle interactions that occur in three-dimensions and expressing them in mathematical relationships is very difficult.

More Details

IMS applications analysis

Rodacy, Philip J.; Reber, Stephen D.; Simonson, Robert J.; Hance, Bradley G.

This report examines the market potential of a miniature, hand-held Ion Mobility Spectrometer. Military and civilian markets are discussed, as well as applications in a variety of diverse fields. The strengths and weaknesses of competing technologies are discussed. An extensive Ion Mobility Spectrometry (IMS) bibliography is included. The conclusions drawn from this study are: (1) There are a number of competing technologies that are capable of detecting explosives, drugs, biological, or chemical agents. The IMS system currently represents the best available compromise regarding sensitivity, specificity, and portability. (2) The military market is not as large as the commercial market, but the military services are more likely to invest R and D funds in the system. (3) Military applications should be addressed before commercial applications are addressed. (4) There is potentially a large commercial market for rugged, hand-held Ion Mobility Spectrometer systems. Commercial users typically do not invest R and D funds in this type of equipment rather, they wait for off-the-shelf availability.

More Details

LDRD report: Smoke effects on electrical equipment

Martin, Tina T.; Baynes, Edward E.; Nowlen, Steven P.; Brockmann, John E.; Gritzo, Louis A.; Shaddix, Christopher R.

Smoke is known to cause electrical equipment failure, but the likelihood of immediate failure during a fire is unknown. Traditional failure assessment techniques measure the density of ionic contaminants deposited on surfaces to determine the need for cleaning or replacement of electronic equipment exposed to smoke. Such techniques focus on long-term effects, such as corrosion, but do not address the immediate effects of the fire. This document reports the results of tests on the immediate effects of smoke on electronic equipment. Various circuits and components were exposed to smoke from different fields in a static smoke exposure chamber and were monitored throughout the exposure. Electrically, the loss of insulation resistance was the most important change caused by smoke. For direct current circuits, soot collected on high-voltage surfaces sometimes formed semi-conductive soot bridges that shorted the circuit. For high voltage alternating current circuits, the smoke also tended to increase the likelihood of arcing, but did not accumulate on the surfaces. Static random access memory chips failed for high levels of smoke, but hard disk drives did not. High humidity increased the conductive properties of the smoke. The conductivity does not increase linearly with smoke density as first proposed; however, it does increase with quantity. The data can be used to give a rough estimate of the amount of smoke that will cause failures in CMOS memory chips, dc and ac circuits. Comparisons of this data to other fire tests can be made through the optical and mass density measurements of the smoke.

More Details

Abuse tests on sealed lead-acid batteries

Loescher, Douglas H.; Crafts, Chris C.; Unkelhaeuser, Terry M.

Abuse tests were conducted on the lead-acid batteries used to power electrical testers used at the Department of Energy's Pantex Plant. Batteries were subjected to short circuits, crushes, penetrations, and drops. None of the observed responses would be a threat to nuclear explosive safety in a bay or cell at Pantex. Temperatures, currents, and damage were measured and recorded during the tests.

More Details

Compliant substrate technology for dissimilar epitaxy

Floro, Jerrold A.; Lee, Stephen R.; Follstaedt, D.M.; Klem, John F.

Strained-layer semiconductor films offer tremendous potential with regards to optoelectronic applications for high speed communications, mobile communications, sensing, and novel logic devices. It is an unfortunate reality that many of the possible film/substrate combinations that could be exploited technologically are off limits because of large differences in lattice parameters, chemical compatibilities, or thermal expansion rates. These mechanical, chemical, and thermal incompatibilities manifest themselves primarily in terms of lattice defects such as dislocations and antiphase boundaries, and in some cases through enhanced surface roughness. An additional limitation, from a production point of view, is money. Device manufacturers as a rule want the cheapest substrate possible. Freeing the heteroepitaxial world of the bonds of (near) lattice matching would vastly expand the types of working devices that could be grown. As a result, a great deal of effort has been expended finding schemes to integrate dissimilar film/substrate materials while preserving the perfection of the film layer. One such scheme receiving significant attention lately is the so-called compliant substrate approach.

More Details

A design methodology for unattended monitoring systems

Smith, James D.; Deland, Sharon M.

The authors presented a high-level methodology for the design of unattended monitoring systems, focusing on a system to detect diversion of nuclear materials from a storage facility. The methodology is composed of seven, interrelated analyses: Facility Analysis, Vulnerability Analysis, Threat Assessment, Scenario Assessment, Design Analysis, Conceptual Design, and Performance Assessment. The design of the monitoring system is iteratively improved until it meets a set of pre-established performance criteria. The methodology presented here is based on other, well-established system analysis methodologies and hence they believe it can be adapted to other verification or compliance applications. In order to make this approach more generic, however, there needs to be more work on techniques for establishing evaluation criteria and associated performance metrics. They found that defining general-purpose evaluation criteria for verifying compliance with international agreements was a significant undertaking in itself. They finally focused on diversion of nuclear material in order to simplify the problem so that they could work out an overall approach for the design methodology. However, general guidelines for the development of evaluation criteria are critical for a general-purpose methodology. A poor choice in evaluation criteria could result in a monitoring system design that solves the wrong problem.

More Details

Polymethylsilsesquioxanes through base-catalyzed redistribution of oligomethylhydridosiloxanes

American Chemical Society, Polymer Preprints, Division of Polymer Chemistry

Rahimian, Kamyar R.; Assink, Roger A.; Loy, Douglas A.

Oligomethylhydridosiloxane and tis copolymer with dimethylsiloxane undergo redistribution chemistry with catalytic tetrabutylammonium hydroxide (TBAH) to produce methylsilane and polymethylsilsesquioxanes. The rate and extent of redistribution reaction can be controlled by the amount of TBAH added, as well as use of solvent. The extent reaction can be followed by both infrared radiation (IR) and solid state NMR spectroscopy, following the disappearance of the SiH in the starting oligosiloxane.

More Details

Solventless sol-gel chemistry through ring-opening polymerization of bridged disilaoxacyclopentanes

American Chemical Society, Polymer Preprints, Division of Polymer Chemistry

Rahimian, Kamyar R.; Loy, Douglas A.

A novel alkylene-bridged disilaoxacyclopentanes were synthesized through the same methodology utilized in the synthesis of phenylene-bridged disilaoxacyclopentane. Disilaoxacyclopentanes were successfully polymerized using photo-acid generators. Furthermore, it was also been able to apply thin films of these materials to different substrates. Successful ring open polymerization (ROP) of these materials using photo-acid generators should allow to use these materials for applications such as conformal coatings and microlithography.

More Details

Porosity in polysilsesquioxane xerogels

American Chemical Society, Polymer Preprints, Division of Polymer Chemistry

Loy, Douglas A.; Schneider, Duane A.; Baugher, Brigitte M.; Rahimian, Kamyar

Polysilsesquioxane xerogels were prepared by the sol-gel polymerization of organotrialkoxysilanes, RSi(OR′)3, with R′ = Me: R = H, Me, vinyl, chloromethyl, chloromethylphenyl, hexadecyl, and octadecyl and R′ = Et: R = H, Me, Et, cyanoethyl, chloromethyl, vinyl, dodecyl, and hexadecyl. The majority of the gels were opaque and colloidal in appearance. The porosity of the xerogels was characterized by nitrogen porosimetry and scanning electron microscopy. Many of the remaining organotrialkoxysilanes formed porous polymeric gels, but the surface areas were lower and the mean pore sizes larger. Some of the xerogels, especially those prepared under acidic conditions were non-porous.

More Details

Molecular engineering with bridged polysilsesquioxanes

American Chemical Society, Polymer Preprints, Division of Polymer Chemistry

Loy, Douglas A.

Bridged polysilsesquioxanes are a class of hybrid organic-inorganic materials that permit molecular engineering of bulk properties including porosity. The briding configuration of the hydrocarbon group insures that network polymers are readily formed and that the organic functionality is homogeneously distributed throughout the polymeric scaffolding at the molecular level. The effects that the length, flexibility, and substitution geometry of the hydrocarbon bridging groups have on the properties of the resulting bridged polysilsesquioxanes are investigated. Details of the preparation, characterization, and some structure property relationships of these bridged polysilsesquioxanes are presented.

More Details

Bridged polysilsesquioxanes: A molecular based approach for the synthesis of functional hybrid materials

American Chemical Society, Polymer Preprints, Division of Polymer Chemistry

Loy, Douglas A.

Bridged polysilsesquioxanes (BPS) are a family of hybrid organic-inorganic materials prepared by sol-gel polymerization of molecular building blocks that contain a variable organic component and at least two trifunctional silyl groups. The synthesis of functional BPS is presented. Dipropylene and diisobutylene carbonate-bridging groups are successfully used as masked hydroxyalkyl and allylic substituents in polysilsequioxane gels and the nature of the substituents is controlled through the surface modification of the gels prior to heat treatment.

More Details

Photovoltaic module performance and durability following long-term field exposure

Progress in Photovoltaics: Research and Applications

King, David L.

This paper summarizes test procedures, results, and implications of in-depth investigations of the performance and durability characteristics of commercial photovoltaic modules after long-term field exposure. New diagnostic test procedures for module reliability research are discussed and illustrated. A collaborative effort with US module manufacturers aimed at achieving 30-year module lifetimes is also described.

More Details

Milestones for disposal of radioactive waste at the Waste Isolation Pilot Plant (WIPP) in the United States

Rechard, Robert P.

The opening of the Waste Isolation Pilot Plant on March 26, 1999, was the culmination of a regulatory assessment process that had taken 25 years. National policy issues, negotiated agreements, and court settlements during the first 15 years of the project had a strong influence on the amount and type of scientific data collected up to this point. Assessment activities before the mid 1980s were undertaken primarily (1) to satisfy needs for environmental impact statements, (2) to satisfy negotiated agreements with the State of New Mexico, or (3) to develop general understanding of selected natural phenomena associated with nuclear waste disposal. In the last 10 years, federal compliance policy and actual regulations were sketched out, and continued to evolve until 1996. During this period, stochastic simulations were introduced as a tool for the assessment of the WIPP's performance, and four preliminary performance assessments, one compliance performance assessment, and one verification performance assessment were performed.

More Details

Characterization of oxynitride dielectric films grown in NO/O{sub 2} mixtures by rapid thermal oxynitridation

Everist, Sarah C.; Meisenheimer, Timothy L.; Nelson, Gerald C.; Smith, Paul M.

Ultra-thin oxynitride films were grown on Si by direct rapid thermal processing (RTP) oxynitridation in NO/O{sub 2} ambients with NO concentrations from 5% to 50%. During oxynitridation, nitrogen accumulated at the Si/dielectric interface and the average concentration of in N through the resulting films ranged from 0.3 to 3.0 atomic percent. The average concentration of N in the films increased with increasing NO in the ambient gas, but decreased with longer RTP times. The maximum N concentration remained relatively constant for all RTP times and a given NO/O{sub 2} ambient. Re-oxidation following oxynitridation altered L the N profile and improved the electrical characteristics, with an optimal NO/O{sub 2} mixture in the range of 10% to 25% NO. Re-oxidation by RTP improves the electrical characteristics with respect to the films that were not re-oxidized and produces only slight changes in the N distribution or maximum concentration. The electrical results also indicate that oxynitride films are superior to comparably grown oxide films.

More Details
Results 89401–89600 of 96,771
Results 89401–89600 of 96,771