Publications

25 Results

Search results

Jump to search filters

GaN pnp bipolar junction transistors operated to 250 °C

Solid-State Electronics

Han, J.; Baca, A.G.

We report on the dc performance of GaN pnp bipolar junction transistors. The structure was grown by metal organic chemical vapor deposition on c-plane sapphire substrates and mesas formed by low damage inductively coupled plasma etching with a Cl2/Ar chemistry. The dc characteristics were measured up to VBC of 65 V in the common base mode and at temperatures up to 250 °C. Under all conditions, IC-IE, indicating higher emitter injection efficiency. The offset voltage was ≤ 2 V and the devices were operated up to power densities of 40 kW cm-2. © 2002 Elsevier Science Ltd. All rights reserved.

More Details

Optical spectroscopy of ingan epilayers in the low indium composition regime

Materials Research Society Symposium - Proceedings

Crawford, M.H.; Han, J.; Banas, M.A.; Myers, S.M.; Peterscn, G.A.; Figiel, J.J.

Photoluminescence (PL) spectroscopy was carried out on a series of Si-doped bulk InGaN films in the low indium (In) composition regime. Room temperature PL showed a factor of 25 increase in integrated intensity as the In composition was increased from 0 to 0.07. Temperature dependent PL data was fit to an Arrhenius equation to reveal an increasing activation energy for thermal quenching of the PL intensity as the In composition is increased. Time resolved PL measurements revealed that only the sample with highest In ( x=0.07) showed a strong spectral variation in decay time across the T=4K PL resonance, indicative of recombination from localized states at low temperatures. The decay times at room temperature were non-radiatively dominated for all films, and the room temperature (non-radiative) decay times increased with increasing In, from 50-230 psec for x=0-0.07. Our data demonstrate that non-radiative recombination is less effective with increasing In composition. © 2000 Materials Research Society.

More Details

Control and Elimination of Cracking of AlGaN Using Low-Temperature AlGaN Interlayers

Applied Physics Letters

Han, J.; Waldrip, Karen E.; Lee, Stephen R.; Figiel, J.J.; Peterscn, G.A.; Myers, S.M.

We demonstrate that the insertion of low-temperature (LT) AlGaN interlayers is effective in reducing mismatch-induced tensile stress and suppressing the formation of cracks during growth of AlGaN directly upon GaN epilayers., Stress evolution and relaxation is monitored using an in-situ optical stress sensor. The combination of in-situ and ex-situ. characterization techniques enables us to determine the degree of pseudomorphism in the interlayers. It is observed that the elastic tensile mismatch between AlGaN and GaN is mediated by the relaxation of interlayers; the use of interlayers offers tunability in the in-plane lattice parameters.

More Details

Low-Dislocation-Density GaN from a Single Growth on a Textured Substrate

Applied Physics Letters

Ashby, Carol I.; Mitchell, Christine C.; Han, J.; Missert, Nancy A.; Provencio, P.N.; Follstaedt, D.M.; Peake, Gregory M.; Griego, Leonardo G.

The density of threading dislocations (TD) in GaN grown directly on flat sapphire substrates is typically greater than 10{sup 9}/cm{sup 2}. Such high dislocation densities degrade both the electronic and photonic properties of the material. The density of dislocations can be decreased by orders of magnitude using cantilever epitaxy (CE), which employs prepatterned sapphire substrates to provide reduced-dimension mesa regions for nucleation and etched trenches between them for suspended lateral growth of GaN or AlGaN. The substrate is prepatterned with narrow lines and etched to a depth that permits coalescence of laterally growing III-N nucleated on the mesa surfaces before vertical growth fills the etched trench. Low dislocation densities typical of epitaxial lateral overgrowth (ELO) are obtained in the cantilever regions and the TD density is also reduced up to 1 micrometer from the edge of the support regions.

More Details

GaN High Power Devices

Han, J.; Baca, A.G.

A brief review is given of recent progress in fabrication of high voltage GaN and AlGaN rectifiers, GaN/AlGaN heterojunction bipolar transistors, GaN heterostructure and metal-oxide semiconductor field effect transistors. Improvements in epitaxial layer quality and in fabrication techniques have led to significant advances in device performance.

More Details

Diffusion, Uptake and Release of Hydrogen in p-type Gallium Nitride: Theory and Experiment

Journal of Applied Physics

Myers, S.M.; Wright, Alan F.; Peterscn, G.A.; Wampler, William R.; Seager, Carleton H.; Crawford, Mary H.; Han, J.

The diffusion, uptake, and release of H in p-type GaN are modeled employing state energies from density-function theory and compared with measurements of deuterium uptake and release using nuclear-reaction analysis. Good semiquantitative agreement is found when account is taken of a surface permeation barrier.

More Details

Simulation of Npn and Pnp AlGaN/GaN heterojunction bipolar transistors performances: Limiting factors and optimum design

IEEE Transactions on Electron Devices

Chang, Ping-Chih; Han, J.; Shul, Randy J.; Baca, A.G.

The performance capabilities of Npn and Pnp AlGaN/GaN heterojunction bipolar transistors have been investigated by using a drift-diffusion transport model. Numerical results have been employed to study the effect of the p-type Mg doping and its incomplete ionization on device performance. The high base resistance induced by the deep acceptor level is found to be the cause of limited current gain values for Npn devices. Several computation approaches have been considered to improve their performance. Reasonable improvement of the DC current gain {beta} is observed by realistically reducing the base thickness in accordance with processing limitations. Base transport enhancement is also predicted by the introduction of a quasi-electric field in the base. The impact of the base resistivity on high-frequency characteristics is investigated for Npn AlGaN/GaN devices. Optimized predictions with maximum oscillation frequency value as high as f{sub MAX} = 20 GHz and a unilateral power gain--U = 25 dB make this bipolar GaN-based technology compatible with communication applications. Simulation results reveal that the restricted amount of free carriers from the p-doped emitter limits Pnp's DC performances operating in common emitter configuration. A preliminary analysis of r.f. characteristics for the Pnp counterpart indicates limited performance mainly caused by the degraded hole mobility.

More Details

The equilibrium state of hydrogen in gallium nitride: Theory and experiment

Journal of Applied Physics

Myers, S.M.; Wright, Alan F.; Peterscn, G.A.; Seager, Carleton H.; Wampler, William R.; Crawford, Mary H.; Han, J.

Formation energies and vibrational frequencies for H in wurtzite GaN were calculated from density functional theory and used to predict equilibrium state occupancies and solid solubilities for p-type, intrinsic, and n-type material. The solubility of deuterium (D) was measured at 600--800 C as a function of D{sub 2} pressure and doping and compared with theory. Agreement was obtained by reducing the H formation energies 0.2 eV from ab-initio theoretical values. The predicted stretch-mode frequency for H bound to the Mg acceptor lies 5% above an observed infrared absorption attributed to this complex. It is concluded that currently recognized H states and physical processes account for the equilibrium behavior of H examined in this work.

More Details

OMVPE Growth of Quaternary (Al,Ga,In)N for UV Optoelectronics (title change from A)

Han, J.; Figiel, J.J.; Peterscn, G.A.; Myers, S.M.; Crawford, Mary H.; Banas, Michael A.; Hearne, Sean J.

We report the growth and characterization of quaternary AlGaInN. A combination of photoluminescence (PL), high-resolution x-ray diffraction (XRD), and Rutherford backscattering spectrometry (RBS) characterizations enables us to explore the contours of constant PL peak energy and lattice parameter as functions of the quaternary compositions. The observation of room temperature PL emission at 351nm (with 20% Al and 5% In) renders initial evidence that the quaternary could be used to provide confinement for GaInN (and possibly GaN). AlGaInN/GrdnN MQW heterostructures have been grown; both XRD and PL measurements suggest the possibility of incorporating this quaternary into optoelectronic devices.

More Details

Role of defects in III-nitride based electronics

Han, J.; Myers, S.M.; Follstaedt, D.M.; Wright, Alan F.; Crawford, Mary H.; Lee, Stephen R.; Seager, Carleton H.; Shul, Randy J.; Baca, A.G.

The LDRD entitled ``Role of Defects in III-Nitride Based Devices'' is aimed to place Sandia National Laboratory at the forefront of the field of GaN materials and devices by establishing a scientific foundation in areas such as material growth, defect characterization/modeling, and processing (metalization and etching) chemistry. In this SAND report the authors summarize their studies such as (1) the MOCVD growth and doping of GaN and AlGaN, (2) the characterization and modeling of hydrogen in GaN, including its bonding, diffusion, and activation behaviors, (3) the calculation of energetic of various defects including planar stacking faults, threading dislocations, and point defects in GaN, and (4) dry etching (plasma etching) of GaN (n- and p-types) and AlGaN. The result of the first AlGaN/GaN heterojunction bipolar transistor is also presented.

More Details

Design and performance of nitride-based UV LEDs

Proceedings of SPIE - The International Society for Optical Engineering

Crawford, Mary H.; Han, J.; Chow, Weng W.; Banas, Michael A.; Figiel, J.J.; Zhang, Lei; Shul, Randy J.

In this paper, we overview several of the critical materials growth, design and performance issues for nitride-based UV (<400 nm) LEDs. The critical issue of optical efficiency is presented through temperature-dependent photoluminescence studies of various UV active regions. These studies demonstrate enhanced optical efficiencies for active regions with In-containing alloys (InGaN, AlInGaN). We discuss the trade-off between the challenging growth of high Al containing alloys (AlGaN, AlGaInN), and the need for sufficient carrier confinement in UV heterostructures. Carrier leakage for various composition AlGaN barriers is examined through a calculation of the total unconfined carrier density in the quantum well system. We compare the performance of two distinct UV LED structures: GaN/AlGaN quantum well LEDs for λ<360 nm emission, and InGaN/AlGaInN quantum well LEDs for 370 nm<λ<390 nm emission.

More Details

Simulation of H behavior in p-GaN(Mg) at elevated temperatures

Myers, S.M.; Wright, Alan F.; Peterscn, G.A.; Seager, Carleton H.; Crawford, Mary H.; Wampler, William R.; Han, J.

The behavior of H in p-GaN(Mg) at temperatures >400 C is modeled by using energies and vibrational frequencies from density-functional theory to parameterize transport and reaction equations. Predictions agree semiquantitatively with experiment for the solubility, uptake, and release of the H when account is taken of a surface barrier. Hydrogen is introduced into GaN during growth by metal-organic chemical vapor deposition (MOCVD) and subsequent device processing. This impurity affects electrical properties substantially, notably in p-type GaN doped with Mg where it reduces the effective acceptor concentration. Application of density-functional theory to the zincblende and wurtzite forms of GaN has indicated that dissociated H in interstitial solution assumes positive, neutral, and negative charge states. The neutral species is found to be less stable than one or the other of the charged states for all Fermi energies. Hydrogen is predicted to form a bound neutral complex with Mg, and a local vibrational mode ascribed to this complex has been observed. The authors are developing a unified mathematical description of the diffusion, reactions, uptake, and release of H in GaN at the elevated temperatures of growth and processing. Their treatment is based on zero-temperature energies from density functional theory. One objective is to assess the consistency of theory with experiment at a more quantitative level than previously. A further goal is prediction of H behavior pertinent to device processing. Herein is discussed aspects relating to p-type GaN(Mg).

More Details

Lattice location of deuterium in plasma and gas charged Mg doped GaN

Wampler, William R.; Barbour, J.C.; Seager, Carleton H.; Myers, S.M.; Wright, Alan F.; Han, J.

The authors have used ion channeling to examine the lattice configuration of deuterium in Mg doped GaN grown by MOCVD. The deuterium is introduced both by exposure to deuterium gas and to ECR plasmas. A density functional approach including lattice relaxation, was used to calculate total energies for various locations and charge states of hydrogen in the wurtzite Mg doped GaN lattice. Computer simulations of channeling yields were used to compare results of channeling measurements with calculated yields for various predicted deuterium lattice configurations.

More Details

Inductively Coupled Plasma-Induced Etch Damage of GaN p-n Junctions

Journal of Vacuum Science and Technology A

Shul, Randy J.; Zhang, Lei; Baca, A.G.; Willison, C.G.; Han, J.

Plasma-induced etch damage can degrade the electrical and optical performance of III-V nitride electronic and photonic devices. We have investigated the etch-induced damage of an Inductively Coupled Plasma (ICP) etch system on the electrical performance of mesa-isolated GaN pn-junction diodes. GaN p-i-n mesa diodes were formed by Cl{sub 2}/BCl{sub 3}/Ar ICP etching under different plasma conditions. The reverse leakage current in the mesa diodes showed a strong relationship to chamber pressure, ion energy, and plasma flux. Plasma induced damage was minimized at moderate flux conditions ({le} 500 W), pressures {ge}2 mTorr, and at ion energies below approximately -275 V.

More Details

High Voltage GaN Schottky Rectifiers

IEEE Transaction Electronic Devices

Han, J.

Mesa and planar GaN Schottky diode rectifiers with reverse breakdown voltages (V{sub RB}) up to 550V and >2000V, respectively, have been fabricated. The on-state resistance, R{sub ON}, was 6m{Omega}{center_dot} cm{sup 2} and 0.8{Omega}cm{sup 2}, respectively, producing figure-of-merit values for (V{sub RB}){sup 2}/R{sub ON} in the range 5-48 MW{center_dot}cm{sup -2}. At low biases the reverse leakage current was proportional to the size of the rectifying contact perimeter, while at high biases the current was proportional to the area of this contact. These results suggest that at low reverse biases, the leakage is dominated by the surface component, while at higher biases the bulk component dominates. On-state voltages were 3.5V for the 550V diodes and {ge}15 for the 2kV diodes. Reverse recovery times were <0.2{micro}sec for devices switched from a forward current density of {approx}500A{center_dot}cm{sup -2} to a reverse bias of 100V.

More Details

Brittle-Ductile Relaxation Kinetics of Strained AlGaN/GaN

Applied Physics Letters

Hearne, Sean J.; Han, J.; Lee, Stephen R.; Floro, Jerrold A.; Follstaedt, D.M.

The authors have directly measured the stress evolution during metal organic chemical vapor deposition of AlGaN/GaN heterostructures on sapphire. In situ stress measurements were correlated with ex situ microstructural analysis to directly determine a critical thickness for cracking and the subsequent relaxation kinetics of tensile-strained Al{sub x}Ga{sub 1{minus}x}N on GaN. Cracks appear to initiate the formation of misfit dislocations at the AlGaN/GaN interface, which account for the majority of the strain relaxation.

More Details

Metalorganic Vapor-Phase Epitaxial Growth and Characterization of Quaternary AlGaInN

Applied Physics Letters

Han, J.; Figiel, J.J.; Crawford, Mary H.; Banas, Michael A.; Peterson, Gary D.; Myers, S.M.; Lee, Stephen R.

In this letter we report the growth (by MOVPE) and characterization of quaternary AlGaInN. A combination of PL, high-resolution XRD, and RBS characterizations enables us to explore and delineate the contours of equil-emission energy and lattice parameters as functions of the quaternary compositions. The observation of room temperature PL emission as short as 351nm (with 20% Al and 5% In) renders initial evidence that the quaternary could be used to provide confinement for GaInN (and possibly GaN). AlGaInN/GdnN MQW heterostructures have also been grown; both x-ray diffraction and PL measurement suggest the possibility of incorporating this quaternary into optoelectronic devices.

More Details

Growth and Fabrication of GaN/AlGaN Heterojunction Bipolar Transistor

Applied Physics Letters

Han, J.

A GaN/AlGaN heterojunction bipolar transistor structure with Mg doping in the base and Si Doping in the emitter and collector regions was grown by Metal Organic Chemical Vapor Deposition in c-axis Al(2)O(3). Secondary Ion Mass Spectrometry measurements showed no increase in the O concentration (2-3x10(18) cm(-3)) in the AlGaN emitter and fairly low levels of C (~4-5x10(17) cm (-3)) throughout the structure. Due to the non-ohmic behavior of the base contact at room temperature, the current gain of large area (~90 um diameter) devices was <3. Increasing the device operating temperature led to higher ionization fractions of the mg acceptors in the base, and current gains of ~10 were obtained at 300 degree C.

More Details

Stress and Defect Control in GaN Using Low Temperature Interlayers

Japanese Journal of Applied Physics

Han, J.

In organometallic vapor phase epitaxial growth of Gail on sapphire, the role of the low- temperature-deposited interlayers inserted between high-temperature-grown GaN layers was investigated by in situ stress measurement, X-ray diffraction, and transmission electron microscopy. Insertion of a series of low temperature GaN interlayers reduces the density of threading dislocations while simultaneously increasing the tensile stress during growth, ultimately resulting in cracking of the GaN film. Low temperature AIN interlayers were found to be effective in suppressing cracking by reducing tensile stress. The intedayer approach permits tailoring of the film stress to optimize film structure and properties.

More Details

MOCVD growth of AlGaN UV LEDs

Proceedings of SPIE - The International Society for Optical Engineering

Han, J.

Issues related to the MOCVD growth of AlGaN, specifically the gas-phase parasitic reactions among TMG, TMA, and NH3, are studied using an in-situ optical reflectometer. It is observed that the presence of the well-known gas phase adduct (TMA: NH3) could seriously hinder the incorporation behavior of TMGa. Relatively low reactor pressures (30-50 Torr) are employed to grow an AlGaN/GaN SCH QW p-n diode structure. The UV emission at 360 nm (FWHM ∼ 10 nm) represents the first report of LED operation from an indium-free GaN QW diode.

More Details
25 Results
25 Results