Publications

6 Results

Search results

Jump to search filters

Bio micro fuel cell grand challenge final report

Apblett, Christopher A.; Novak, James L.; Hudgens, James J.; Podgorski, Jason R.; Brozik, Susan M.; Flemming, Jeb H.; Ingersoll, David I.; Eisenbies, Stephen E.; Shul, Randy J.; Cornelius, Christopher J.; Fujimoto, Cy F.; Schubert, William K.; Hickner, Michael A.; Volponi, Joanne V.; Kelly, M.; Zavadil, Kevin R.; Staiger, Chad S.; Dolan, Patricia L.; Harper, Jason C.; Doughty, Daniel H.; Casalnuovo, Stephen A.; Kelley, John B.; Simmons, Blake S.; Borek, Theodore T.; Meserole, Stephen M.; Alam, Todd M.; Cherry, Brian B.; Roberts, Greg

Abstract not provided.

Testing thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems used in parabolic trough solar power plants

Brosseau, Douglas A.; Hlava, Paul F.; Kelly, M.

Parabolic trough power systems that utilize concentrated solar energy to generate electricity are a proven technology. Industry and laboratory research efforts are now focusing on integration of thermal energy storage as a viable means to enhance dispatchability of concentrated solar energy. One option to significantly reduce costs is to use thermocline storage systems, low-cost filler materials as the primary thermal storage medium, and molten nitrate salts as the direct heat transfer fluid. Prior thermocline evaluations and thermal cycling tests at the Sandia National Laboratories' National Solar Thermal Test Facility identified quartzite rock and silica sand as potential filler materials. An expanded series of isothermal and thermal cycling experiments were planned and implemented to extend those studies in order to demonstrate the durability of these filler materials in molten nitrate salts over a range of operating temperatures for extended timeframes. Upon test completion, careful analyses of filler material samples, as well as the molten salt, were conducted to assess long-term durability and degradation mechanisms in these test conditions. Analysis results demonstrate that the quartzite rock and silica sand appear able to withstand the molten salt environment quite well. No significant deterioration that would impact the performance or operability of a thermocline thermal energy storage system was evident. Therefore, additional studies of the thermocline concept can continue armed with confidence that appropriate filler materials have been identified for the intended application.

More Details

AlGaN Materials Engineering for Integrated Multi-Function Systems

Lee, Stephen R.; Casalnuovo, Stephen A.; Mani, Seethambal S.; Mitchell, Christine C.; Waldrip, Karen E.; Guilinger, Terry R.; Kelly, M.; Fleming, J.G.; Santa Tsao, Sylviaines; Follstaedt, D.M.; Wampler, William R.

This LDRD is aimed to place Sandia at the forefront of GaN-based technologies. Two important themes of this LDRD are: (1) The demonstration of novel GaN-based devices which have not yet been much explored and yet are coherent with Sandia's and DOE's mission objectives. UV optoelectronic and piezoelectric devices are just two examples. (2) To demonstrate front-end monolithic integration of GaN with Si-based microelectronics. Key issues pertinent to the successful completion of this LDRD have been identified to be (1) The growth and defect control of AlGaN and GaN, and (2) strain relief during/after the heteroepitaxy of GaN on Si and the separation/transfer of GaN layers to different wafer templates.

More Details

Grating light reflection spectroelectrochemistry for detection of trace amounts of aromatic hydrocarbons in water

Kelly, M.; Sweatt, W.C.; Kemme, S.A.; Blair, Dianna S.

Grating light reflection spectroscopy (GLRS) is an emerging technique for spectroscopic analysis and sensing. A transmission diffraction grating is placed in contact with the sample to be analyzed, and an incident light beam is directed onto the grating. At certain angles of incidence, some of the diffracted orders are transformed from traveling waves to evanescent waves. This occurs at a specific wavelength that is a function of the grating period and the complex index of refraction of the sample. The intensities of diffracted orders are also dependent on the sample's complex index of refraction. The authors describe the use of GLRS, in combination with electrochemical modulation of the grating, for the detection of trace amounts of aromatic hydrocarbons. The diffraction grating consisted of chromium lines on a fused silica substrate. The depth of the grating lines was 1 {micro}m, the grating period was 1 {micro}m, and the duty cycle was 50%. Since chromium was not suitable for electrochemical modulation of the analyte concentration, a 200 nm gold layer was deposited over the entire grating. This gold layer slightly degraded the transmission of the grating, but provided satisfactory optical transparency for the spectroelectrochemical experiments. The grating was configured as the working electrode in an electrochemical cell containing water plus trace amounts of the aromatic hydrocarbon analytes. The grating was then electrochemically modulated via cyclic voltammetry waveforms, and the normalized intensity of the zero order reflection was simultaneously measured. The authors discuss the lower limits of detection (LLD) for two analytes, 7-dimethylamino-1,2-benzophenoxazine (Meldola's Blue dye) and 2,4,6-trinitrotoluene (TNT), probed with an incident HeNe laser beam ({lambda} = 543.5 nm) at an incident angle of 52.5{degree}. The LLD for 7-dimethylamino-1,2-benzophenoxazine is approximately 50 parts per billion (ppb), while the LLD for TNT is approximately 50 parts per million (ppm). The possible factors contributing to the differences in LLD for these analytes are discussed. This is the final report for a Sandia National Laboratories Laboratory Directed Research and Development (LDRD) project conducted during fiscal years 1998 and 1999 (case number 3518.190).

More Details

Sandia/SEMATECH Contamination Free Manufacturing Research Center, novel sensor development activities for enhanced process control

Kelly, M.

The Sandia/SEMATECH Contamination Free Manufacturing Research Center (CFMRC) was founded in 1992 with the goal of providing research and development support to the U.S. semiconductor industry in the area of defect reduction in manufacturing equipment and processes. The program encompasses topics in equipment/process contamination modeling, advanced wafer cleaning, water use reduction, organic contamination, wafer- map defect data analysis and contamination sensor development. The Contamination Sensor development activity focuses on producing advanced tools for the semiconductor industry by development and commercialization of in-line cost-effective sensors for measurement of contaminants in critical process tools. There are three phases to the CFMRC sensor development activities. Initially, efforts focus on sensor feasibility testing whereby several potential sensors are evaluated for technical and business issues such as sensitivity, reproducibility, cost, size, etc. After this initial screening, subsequent refinement of one or more chosen sensors occurs through beta-testing in a manufacturing environment to ensure viability for manufacturing applications. Lastly, commercialization with an existing supplier is critical in ensuring availability of the sensors for the industry. The examples described in this paper cover sensor development at all three stages in this evolutionary process.

More Details

Silicon micromachining based on porous silicon formation

Kelly, M.

We describe a new electrochemical processing technique based on porous silicon formation that can produce surface and buried insulators, conductors, and sacrificial layers required for silicon micromachining to fabricate micromechanical devices and sensors. Porosity and thickness of porous silicon layers for micromachining can be controlled to a relative precision better than 0.3% for porosities ranging from 20--80% and thicknesses ranging from sub- micron to hundreds of microns. The technique of using porous silicon has important implications for microfabrication of silicon electromechanical devices and sensors. The high relative precision in realizing a given thickness is superior to that obtained with conventional chemical etches. 8 refs.

More Details
6 Results
6 Results