Publications

Results 87601–87800 of 96,771

Search results

Jump to search filters

Theory of quantum coherence phenomena in semiconductor quantum dots

Proposed for publication in Physical Review A.

Chow, Weng W.; Chow, Weng W.; Phillips, Mark C.

This paper explores quantum-coherence phenomena in a semiconductor quantum-dot structure. The calculations predict the occurrence of inversionless gain, electromagnetically induced transparency, and refractive-index enhancement in the transient regime for dephasing rates typical under room temperature and high excitation conditions. They also indicate deviations from atomic systems because of strong many-body effects. Specifically, Coulomb interaction involving states of the quantum dots and the continuum belonging to the surrounding quantum well leads to collision-induced population redistribution and many-body energy and field renormalizations that modify the magnitude, spectral shape, and time dependence of quantum-coherence effects.

More Details

Level set methods to compute minimal surfaces in a medium with exclusions (voids)

Proposed for publication in Experimental Mathematics.

Walsh, Timothy W.; Walsh, Timothy W.

In T1, periodic minimal surfaces in a medium with exclusions (voids) are constructed and in this paper we present two algorithms for computing these minimal surfaces. The two algorithms use evolution of level sets by mean curvature. The first algorithm solves the governing nonlinear PDE directly and enforces numerically an orthogonality condition that the surfaces satisfy when they meet the boundaries of the exclusions. The second algorithm involves h-adaptive finite element approximations of a linear convection-diffusion equation, which has been shown to linearize the governing nonlinear PDE for weighted mean curvature flow.

More Details

Scaling of high-mass tungsten-wire-array z-pinch discrete-wire implosion dynamics at 20 MA

Proposed for publication in Physical Review Letters.

Cuneo, M.E.; Yu, Edmund Y.; Garasi, Christopher J.; Oliver, Bryan V.; Aragon, Rafael A.; Bliss, David E.; Lazier, Steven E.; Mehlhorn, Thomas A.; Nielsen, D.S.; Sarkisov, Gennady S.; Cuneo, M.E.; Vesey, Roger A.; Wagoner, Tim C.; Chandler, Gordon A.; Waisman, Eduardo M.; Stygar, William A.; Nash, Thomas J.; Yu, Edmund Y.

Abstract not provided.

Spontaneous ionization of hydrogen atoms at the Si-SiO2 interface

Proposed for publication in Physical Review B.

Hjalmarson, Harold P.; Edwards, Arthur H.; Schultz, Peter A.; Hjalmarson, Harold P.

We present a series of electronic structure calculations that demonstrate a mechanism for spontaneous ionization of hydrogen at the Si-SiO{sub 2} interface. Specifically, we show that an isolated neutral hydrogen atom will spontaneously give up its charge and bond to a threefold coordinated oxygen atom. We refer to this entity as a proton. We have calculated the potential surface and found it to be entirely attractive. In contrast, hydrogen molecules will not undergo an analogous reaction. We relate these calculations both to proton generation experiments and to hydrogen plasma experiments.

More Details

Synthesis of highly magnetic iron nanoparticles suitable for field-structuring using a b-diketone surfactant

Proposed for publication in Nano Letters.

Huber, Dale L.; Huber, Dale L.; Venturini, Eugene L.; Martin, James E.; Provencio, P.N.

We describe the synthesis of highly magnetic iron nanoparticles using a novel surfactant, a {beta}-diketone. We have produced 6 nm iron nanoparticles with an unusually high saturation magnetization of more than 80% the value of bulk iron. Additionally, we measured a particle susceptibility of 14 (MKS units), which is far above the value possible for micron-scale spherical particles. These properties will allow for formation of composites that can be highly structured by magnetic fields.

More Details

Focused ion beam milling of diamond : effects of H2O on yield, surface morphology and microstructure

Proposed for publication in the Journal of Vacuum Science and Technology B.

Adams, David P.; Adams, David P.; Vasile, Michael J.; Mayer, T.M.; Hodges, Vernon C.

The effects of H{sub 2}O vapor introduced during focused ion beam (FIB) milling of diamond(100) are examined. In particular, we determine the yield, surface morphology, and microstructural damage that results from FIB sputtering and H{sub 2}O-assisted FIB milling processes. Experiments involving 20 keV Ga{sup +} bombardment to doses {approx}10{sup 18} ions/cm{sup 2} are conducted at a number of fixed ion incidence angles, {theta}. For each {theta} selected, H{sub 2}O-assisted ion milling shows an increased material removal rate compared with FIB sputtering (no gas assist). The amount by which the yield is enhanced depends on the angle of incidence with the largest difference occurring at {theta} = 75{sup o}. Experiments that vary pixel dwell time from 3 {micro}s to 20 ms while maintaining a fixed H{sub 2}O gas pressure demonstrate the additional effect of beam scan rate on yield for gas-assisted processes. Different surface morphologies develop during ion bombardment depending on the angle of ion incidence and the presence/absence of H{sub 2}O. In general, a single mode of ripples having a wave vector aligned with the projection of the ion beam vector forms for {theta} as high as 70{sup o}. H{sub 2}O affects this morphology by lowering the ripple onset angle and decreasing the ripple wavelength. At high angles of incidence ({theta} > 70{sup o}) a step/terrace morphology is observed. H{sub 2}O-assisted milling at {theta} > 70{sup o} results in a smoother stepped surface compared with FIB sputtering. Transmission electron microscopy shows that the amorphized thickness is reduced by 20% when using H{sub 2}O-assisted FIB milling.

More Details

Magnetic response of dilute cobalt nanoparticles in an organic matrix : the effects of aging and interface chemistry

Proposed for publication in Physical Review Letters.

Wilcoxon, Jess P.; Wilcoxon, Jess P.; Venturini, Eugene L.; Provencio, P.N.

We report studies of the magnetic response of dilute frozen solutions of nanocrystalline Co particles grown in inverse micelles. Crystalline nanoclusters which initially exhibit only a small fraction of the bulk saturation moment restructure in solution without any change in cluster size or blocking temperature over a period of {approx}30-60 days, finally yielding a moment/atom which exceeds that of bulk Co. The saturation magnetism maintains its enhanced value for temperatures up to the melting point of the solvent matrix, but is strongly dependent on surface active additives and molecular oxygen.

More Details

Nature of the parasitic chemistry during AlGaInN OMVPE

Proposed for publication in Journal of Crystal Growth.

Creighton, J.R.; Creighton, J.R.; Wang, George T.; Breiland, William G.; Coltrin, Michael E.

Using in situ laser light scattering, we have observed gas-phase nanoparticles formed during AlN, GaN and InN OMVPE. The response of the scattering intensity to a wide range of conditions indicates that the AlN parasitic chemistry is considerably different from the corresponding GaN and InN chemistry. A simple CVD particle-growth mechanism is introduced that can qualitatively explain the observed particle size and yields a strong residence time dependence. We also used FTIR to directly examine the reactivity of the metalorganic precursors with NH{sub 3} in the 25-300 C range. For trimethylaluminum/NH{sub 3} mixtures a facile CH{sub 4} elimination reaction is observed, which also produces gas-phase aminodimethylalane, i.e. Al(CH{sub 3}){sub 2}NH{sub 2}. For trimethylgallium and trimethylindium the dominant reaction is reversible adduct formation. All of the results indicate that the AlN particle-nucleation mechanism is predominately of a concerted nature, while the GaN and InN particle-nucleation mechanisms involve homogeneous pyrolysis and radical chemistry.

More Details

BaO/W(100) thermionic emitters and the effects of Sc, Y, La, and the density functional used in computations

Proposed for publication in Surface Science Letters.

Jennison, Dwight R.; Jennison, Dwight R.; Schultz, Peter A.; King, Donald B.; Zavadil, Kevin R.

Density functional theory is used to predict workfunctions, {psi}. For relaxed clean W(1 0 0), the local density approximation (LDA) agrees with experiment better than the newer generalized gradient approximation, probably due to the surface electron self-energy. The large Ba metallic radius indicates it covers W(1 0 0) at about 0.5 monolayer (ML). However, Ba{sup 2+}, O{sup 2-}, and metallic W all have similar radii. Thus 1 ML of BaO (one BaO unit for each two W atoms) produces minimum strain, indicating commensurate interfaces. BaO (1 ML) and Ba (1/2 ML) have the same {psi} to within 0.02 V, so at these coverages reduction or oxidation is not important. Due to greater chemical activity of ScO vs. highly ionic BaO, when mixing the latter with this suboxide of scandia, the overlayer always has BaO as the top layer and ScO as the second layer. The BaO/ScO bilayer has a rocksalt structure, suggesting high stability. In the series BaO/ScO/, BaO/YO/, and BaO/LaO/W(1 0 0), the latter has a remarkably low {psi} of 1.3 V (LDA), but 2 ML of rocksalt BaO also has {psi} at 1.3 V. We suggest BaO (1 ML) does not exist and that it is worthwhile to attempt the direct synthesis and study of BaO (2 ML) and BaO/LaO.

More Details

Influence of ambient on hydrogen release from p-type gallium nitride

Proposed for publication in Journal of Applied Physics.

Myers, S.M.; Myers, S.M.; Vaandrager, Bastiaan L.; Wampler, William R.; Seager, Carleton H.

Mechanisms of H release from Mg-doped, p-type GaN were investigated in vacuum, in N{sub 2} and O{sub 2} gases, and in electron-cyclotron-resonance N{sub 2} plasmas. Replacing grown-in protium with deuterium (D) and employing sensitive nuclear-reaction analysis allowed the retained concentration to be followed quantitatively over two decades during isothermal heating, illuminating the kinetics of controlling processes. Oxidation attending the O{sub 2} exposures was monitored through nuclear-reaction analysis of {sup 18}O. N{sub 2} gas at atmospheric pressure increases the rate of D release appreciably relative to vacuum. The acceleration produced by O{sub 2} gas is much greater, but is diminished in later stages of the release by oxidation. The N{sub 2} plasma employed in these studies had no resolvable effect. We argue that surface desorption is rate controlling in the D release, and that it occurs by D-D recombination and the formation of N-D and O-D species. Our results are quantitatively consistent with a theoretical model wherein the bulk solution is in equilibrium with surface states from which desorption occurs by processes that are both first and second order in surface coverage.

More Details

Design, construction, characterization, and application of a hyperspectral microarray scanner

Proposed for publication in Applied Optics.

Sinclair, Michael B.; Sinclair, Michael B.; Timlin, Jerilyn A.; Haaland, David M.; Werner-Washburne, Margaret

We describe the design, construction, and operation of a hyperspectral microarray scanner for functional genomic research. The hyperspectral instrument operates with spatial resolutions ranging from 3 to 30 {micro}m and records the emission spectrum between 490 and 900 nm with a spectral resolution of 3 nm for each pixel of the microarray. This spectral information, when coupled with multivariate data analysis techniques, allows for identification and elimination of unwanted artifacts and greatly improves the accuracy of microarray experiments. Microarray results presented in this study clearly demonstrate the separation of fluorescent label emission from the spectrally overlapping emission due to the underlying glass substrate. We also demonstrate separation of the emission due to green fluorescent protein expressed by yeast cells from the spectrally overlapping autofluorescence of the yeast cells and the growth media.

More Details

Comparisons of prediction abilities of augmented classical least squares and partial least squares with realistic simulated data : effects of uncorrelated and correlated errors with nonlinearities

Proposed for publication in Applied Spectroscopy.

Melgaard, David K.; Melgaard, David K.; Haaland, David M.

A manuscript describing this work summarized below has been submitted to Applied Spectroscopy. Comparisons of prediction models from the new ACLS and PLS multivariate spectral analysis methods were conducted using simulated data with deviations from the idealized model. Simulated uncorrelated concentration errors, and uncorrelated and correlated spectral noise were included to evaluate the methods on situations representative of experimental data. The simulations were based on pure spectral components derived from real near-infrared spectra of multicomponent dilute aqueous solutions containing glucose, urea, ethanol, and NaCl in the concentration range from 0-500 mg/dL. The statistical significance of differences was evaluated using the Wilcoxon signed rank test. The prediction abilities with nonlinearities present were similar for both calibration methods although concentration noise, number of samples, and spectral noise distribution sometimes affected one method more than the other. In the case of ideal errors and in the presence of nonlinear spectral responses, the differences between the standard error of predictions of the two methods were sometimes statistically significant, but the differences were always small in magnitude. Importantly, SRACLS was found to be competitive with PLS when component concentrations were only known for a single component. Thus, SRACLS has a distinct advantage over standard CLS methods that require that all spectral components be included in the model. In contrast to simulations with ideal error, SRACLS often generated models with superior prediction performance relative to PLS when the simulations were more realistic and included either non-uniform errors and/or correlated errors. Since the generalized ACLS algorithm is compatible with the PACLS method that allows rapid updating of models during prediction, the powerful combination of PACLS with ACLS is very promising for rapidly maintaining and transferring models for system drift, spectrometer differences, and unmodeled components without the need for recalibration. The comparisons under different noise assumptions in the simulations obtained during this investigation emphasize the need to use realistic simulations when making comparisons between various multivariate calibration methods. Clearly, the conclusions of the relative performance of various methods were found to be dependent on how realistic the spectral errors were in the simulated data. Results demonstrating the simplicity and power of ACLS relative to PLS are presented in the following section.

More Details

Analysis of myoglobin adsorption to Cu(II)-IDA functionalized Langmuir monolayers by grazing incidence neutron and x-ray techniques

Proposed for publication in Biophysical Journal.

Kent, Michael S.; Kent, Michael S.; Yim, Hyun Y.; Sasaki, Darryl Y.

The adsorption of myoglobin to Langmuir monolayers of a metal-chelating lipid in crystalline phase was studied using neutron and X-ray reflectivity (NR and XR) and grazing incidence X-ray diffraction (GIXD). In this system, adsorption is due to the interaction between chelated divalent copper or nickel ions and the histidine moieties at the outer surface of the protein. The binding interaction of histidine with the Ni-IDA complex is known to be much weaker than that with Cu-IDA. Adsorption was examined under conditions of constant surface area with an initial pressure of 40 mN/m. After {approx}12 h little further change in reflectivity was detected, although the surface pressure continued to slowly increase. For chelated Cu{sup 2+} ions, the adsorbed layer structure in the final state was examined for bulk myoglobin concentrations of 0.10 and 10 {micro}M. For the case of 10 {micro}M, the final layer thickness was {approx}43 {angstrom}. This corresponds well to the two thicker dimensions of myoglobin in the native state (44 {angstrom} x 44 {angstrom} x 25 {angstrom}) and so is consistent with an end-on orientation for this disk-shaped protein at high packing density. However, the final average volume fraction of amino acid segments in the layer was 0.55, which is substantially greater than the value of 0.44 calculated for a completed monolayer from the crystal structure. This suggests an alternative interpretation based on denaturation. GIXD was used to follow the effect of protein binding on the crystalline packing of the lipids and to check for crystallinity within the layer of adsorbed myoglobin. Despite the strong adsorption of myoglobin, very little change was observed in the structure of the DSIDA film. There was no direct evidence in the XR or GIXD for peptide insertion into the lipid tail region. Also, no evidence for in-plane crystallinity within the adsorbed layer of myoglobin was observed. For 0.1 {micro}M bulk myoglobin concentration, the average segment volume fraction was only 0.13 and the layer thickness was {le} 25 {angstrom}. Adsorption of myoglobin to DSIDA-loaded with Ni{sup 2+} was examined at bulk concentrations of 10 and 50 {micro}M. At 10 {micro}M myoglobin, the adsorbed amount was comparable to that obtained for adsorption to Cu{sup 2+}-loaded DSIDA monolayers at 0.1 {micro}M. But interestingly, the adsorbed layer thickness was 38 {angstrom}, substantially greater than that obtained at low coverage with Cu-IDA. This indicates that either there are different preferred orientations for isolated myoglobin molecules adsorbed to Cu-IDA and Ni-IDA monolayer films or else myoglobin denatures to a different extent in the two cases. Either interpretation can be explained by the very different binding energies for individual interactions in the two cases. At 50 {micro}M myoglobin, the thickness and segement volume fraction in the adsorbed layer for Ni-IDA were comparable to the values obtained with Cu-IDA at 10 {micro}M myoglobin.

More Details

Giant magnetic susceptibility enhancement in field-structured dipolar nanocomposites

Proposed for publication in Physical Review B.

Martin, James E.; Martin, James E.; Venturini, Eugene L.; Huber, Dale L.

We demonstrate through experiment and simulation that when mono-domain Fe nanoparticles are formed into chains by the application of a magnetic field, the susceptibility of the resulting structure is greatly enhanced (11.4-fold) parallel to the particle chains and is much larger than transverse to the chains. Simulations show that this significant enhancement is expected when the susceptibility of the individual particles approaches 5 in MKS units, and is due to the spontaneous magnetization of individual particle chains, which occurs because of the strong dipolar interactions. This large enhancement is only possible with nanoparticles, because demagnetization fields limit the susceptibility of a spherical multi-domain particle to 3 (MKS). Experimental confirmation of the large susceptibility enhancement is presented, and both the enhancement and the susceptibility anisotropy are found to agree with simulation. The specific susceptibility of the nanocomposite is 54 (MKS), which exceeds the highest value we have obtained for field-structured composites of multi-domain particles by a factor of four.

More Details

Monolithically-integrated MicroChemLab for gas-phase chemical analysis

Shul, Randy J.; Manginell, Ronald P.; Okandan, Murat O.; Kottenstette, Richard K.; Lewis, Patrick R.; Adkins, Douglas R.; Bauer, Joseph M.; Sokolowski, Sara S.

Sandia National Labs has developed an autonomous, hand-held system for sensitive/selective detection of gas-phase chemicals. Through the sequential connection of microfabricated preconcentrators (PC), gas chromatography columns (GC) and a surface acoustic wave (SAW) detector arrays, the MicroChemLab{trademark} system is capable of selective and sensitive chemical detection in real-world environments. To date, interconnection of these key components has primarily been achieved in a hybrid fashion on a circuit board modified to include fluidic connections. The monolithic integration of the PC and GC with a silicon-based acoustic detector is the subject of this work.

More Details

Ion beam analysis for fusion energy research

Wampler, William R.

Proposed next-step devices for development of fusion energy present a major increase in the energy content and duration of plasmas far beyond those encountered in existing machines. This increases the importance of controlling interactions between the fusion plasma and first-wall materials. These interactions change the wall materials and strongly affect the core plasma conditions. Two critical processes are the erosion of materials by the plasma, and the redeposition of eroded material along with hydrogen isotopes from the plasma. These impact reactor design through the lifetime of plasma-facing components and the inventory of tritium retained inside the vessel. Ion beam analysis has been widely used to investigate these complex plasma-material interactions in most of the large fusion plasma experiments. The design and choice of plasma-facing materials for next-step machines rely on knowledge obtained from these studies. This paper reviews the use of ion beam analysis for fusion energy research, and shows how these studies have helped to guide the design and selection of materials for a next-step machine.

More Details

Adsorption of small molecules in LTA-type zeolites : 1. NH3, CO2, and H2O in zeolite 4A

Proposed for publication in the Journal of Physical Chemistry B.

Chandross, M.; Jaramillo, Eugenio J.; Modine, N.A.

We have developed force fields for the calculation of adsorption of NH{sub 3}, CO{sub 2}, and H{sub 2}O on zeolite 4A by performing Gibbs ensemble Monte Carlo simulations to fit experimental isotherms at 298 K. The calculated NH{sub 3} and CO{sub 2} isotherms are in excellent agreement with experimental data over a wide range of temperatures and several orders of magnitude in pressure. We have calculated isotherms for H{sub 2}O in 4A using two different models and have found that H{sub 2}O saturates zeolite 4A even at pressures as low as 0.01 kPa for the range of temperatures studied. We have studied the geometry of the adsorption sites and their dependence on loading. At low pressures, CO{sub 2} molecules adsorb with their longitudinal axis pointing toward the center of the supercage, whereas at higher pressures, the two oxygen atoms are equidistant from the Na atom in the binding site.

More Details

Use of Classical Least Squares/Partial Least Squares (CLS/PLS) hybrid algorithm for calibration and calibration maintenance of Surface Acoustic Wave (SAW) devices

Proposed for publication in Sensors and Actuators B.

Rivera, Dion A.; Rivera, Dion A.; Alam, Mary K.; Yelton, William G.; Staton, Alan W.; Simonson, Robert J.

Many data analysis algorithms that are currently employed in SAW sensors lack the ability to easily maintain calibration models in the presence of unmodeled interferents or sensor drift. The classical least squares/partial least squares (CLS/PLS) hybrid algorithm is tested in this study for its ability to update calibration models for unmodeled interferents and sensor drift with information from only a single recalibration standard. Use of the CLS/PLS hybrid algorithm for calibration and calibration maintenance of surface acoustic wave (SAW) devices was investigated for synthetic mixtures of iso-octane-methanol-water and with synthetic mixtures of nerve agent analogs, di-iso-propyl methyl phosphonate (DIMP)-kerosene-water along with a true ternary mixture of dimethyl methyl phosphonate (DMMP)-kerosene-water. Calibration statistics using the hybrid algorithm were found to be as good as those obtained from a standard partial least squares (PLS) analysis. In prediction, the hybrid algorithm models were found to perform equivalently to PLS models in the absence of unmodeled interferents or sensor drift, with an accuracy of 5-10% of the reference values and a high degree of precision. In the case of prediction in the presence of unmodeled interferents and/or sensor drift, PLS models and prediction augmented CLS/PLS (PACLS/PLS) hybrid models were compared using a single standard sample to update each model for prediction. For the cases studied, PACLS/PLS hybrid models were comparable to or outperformed updated PLS models that used subset recalibration or piece-wise direct standardization.

More Details

The growth of n-type GaSb by metal-organic chemical vapor deposition : effects of two-band conduction on carrier concentrations and donor activation

Proposed for publication in the Journal of Applied Physics.

Cederberg, Jeffrey G.; Biefeld, Robert M.

n-type GaSb has been prepared by metal-organic chemical vapour deposition with tellurium donors using diethyltelluride as the dopant precursor. The maximum carrier concentration achieved was 1.7 x 10{sup 18} cm{sup -3}, as measured by van der Pauw-Hall effect measurements, for an atomic tellurium concentration of 1.8 x 10{sup 19} cm{sup -3}. The apparent low activation of tellurium donors is explained by a model that considers the effect of electrons occupying both the {Lambda} and L bands in GaSb due to the small energy difference between the {Lambda} and L conduction band minima. The model also accounts for the apparent increase in the carrier concentration determined by van der Pauw-Hall effect measurements at cryogenic temperatures.

More Details

An exploration of alternative approaches to the representation of uncertainty in model predictions

Proposed for publication in Reliability Engineering and System Safety.

Oberkampf, William L.; Helton, J.C.; Johnson, J.D.

Several simple test problems are used to explore the following approaches to the representation of the uncertainty in model predictions that derives from uncertainty in model inputs: probability theory, evidence theory, possibility theory, and interval analysis. Each of the test problems has rather diffuse characterizations of the uncertainty in model inputs obtained from one or more equally credible sources. These given uncertainty characterizations are translated into the mathematical structure associated with each of the indicated approaches to the representation of uncertainty and then propagated through the model with Monte Carlo techniques to obtain the corresponding representation of the uncertainty in one or more model predictions. The different approaches to the representation of uncertainty can lead to very different appearing representations of the uncertainty in model predictions even though the starting information is exactly the same for each approach. To avoid misunderstandings and, potentially, bad decisions, these representations must be interpreted in the context of the theory/procedure from which they derive.

More Details

Modeling electrodeposition in LIGA microfabrication using an arbitrary-Lagrangian-Eulerian formulation for moving-boundary tracking with repeated re-meshing

Chen, Ken S.

Electrodeposition is a key process in LIGA (Lithographie, Galvanoformung, Abformung - German words for lithography, electroplating and molding) - microfabrication, which is increasingly demonstrated to be a viable technology for fabricating micro-devices or parts. LIGA Electrodeposition involves complex multi-physics phenomena: (1) diffusion, migration, and convection of charged species in a centimeter-scale electrolyte-bath region and in micron-scale featurecavity or trench regions; (2) homogeneous and heterogeneous electrochemical reactions; and (3) moving deposition surface or surfaces on which metal ions (e.g., {approx} i) are electrochemically reduced to form a pure metal or an alloy.

More Details

Load relaxation of helical extension springs in transient thermal environments

Proposed for publication in Journal of Materials Engineering and Performance.

Dykhuizen, Ronald C.; Dykhuizen, Ronald C.; Robino, Charles V.

The load relaxation behavior of small Elgiloy helical extension springs has been evaluated by a combined experimental and modeling approach. Isothermal, continuous heating, and interrupted heating relaxation tests of a specific spring design were conducted. Spring constants also were measured and compared with predictions using common spring formulas. For the constant heating rate relaxation tests, it was found that the springs retained their strength to higher temperatures at higher heating rates. A model, which describes the relaxation behavior, was developed and calibrated with the isothermal load relaxation tests. The model incorporates both time-independent deformation mechanisms, such as thermal expansion and shear modulus changes, as well as time-dependent mechanisms such as primary and steady state creep. The model was shown to accurately predict the load relaxation behavior for the continuous heating tests, as well as for a complex stepwise heating thermal cycle. The model can be used to determine the relaxation behavior for any arbitrary thermal cycle. An extension of the model to other spring designs is discussed.

More Details

Influence of cross-link density on the thermal properties of thin polymer network films

Langmuir

Lenhart, Joseph L.; Wu, Wen I.

More Details

MEMS packaging efforts at Sandia National Laboratories

Proceedings of SPIE - The International Society for Optical Engineering

Custer, Jonathan S.

Sandia National Laboratories has programs covering a broad range of MEMS technologies from LIGA to bulk to surface micromachining. These MEMS technologies are being considered for an equally broad range of applications, including sensors, actuators, optics, and microfluidics. As these technologies have moved from the research to the prototype product stage, packaging has been required to develop new capabilities to integrated MEMS and other technologies into functional microsystems. This paper discusses several of Sandia's MEMS packaging efforts, focusing mainly on inserting Sandia's SUMMiT™ V (5-level polysilicon) surface micromachining technology into fieldable microsystems.

More Details

Reactive wetting: H2O/Rh(111)

Physical Review Letters

Feibelman, Peter J.

An overview is given of ab initio total energy calculations to search for thermodynamically favorable wetting structures. Focus is on results for H2O on Rh(111). It is shown that more preadsorbed O or B adatoms are necessary, compared to C's, to make wetting occur.

More Details

SGOPT User Manual Version 2.0

Hart, William E.

This document provides a user manual for the SGOPT software library. SGOPT is a C++ class library for nonlinear optimization. This library uses an object-oriented design that allows the software to be extended to a new problem domains. Furthermore, this library was designed to that the interface is straightforward while providing flexibility to allow new algorithms to be easily added to this library. The SGOPT library has been used by several software projects at Sandia, and it is integrated into the DAKOTA design and analysis toolkit. This report provides a high-level description of the optimization algorithms provided by SGOPT and describes the C++ class hierarchy in which they are implemented. Finally, installation instructions are included.

More Details

Nanogeochemistry: Geochemical reactions and mass transfers in nanopores

Geology

Wang, Yifeng; Bryan, Charles R.; Xu, Huifang; Gao, Huizhen

Nanopores are ubiquitous in porous geologic media and may account for >90% of total mineral surface areas. Surface chemistry, ion sorption, and the related geochemical reactions within nanopores can be significantly modified by a nanometer-scale space confinement. As the pore size is reduced to a few nanometers, the difference between surface acidity constants (ΔpK = pK2 - pK1) decreases, giving rise to a higher surface charge density on a nanopore surface than that on an unconfined mineral-water interface. The change in surface acidity constants results in a shift of ion sorption edges and enhances ion sorption on nanopore surfaces. Also, the water activity in a nanopore is greatly reduced, thus increasing the tendency for inner sphere complexation and mineral precipitation. All these effects combine to preferentially enrich trace elements in nanopores, as observed in both field and laboratory studies. The work reported here sheds new light on such fundamental geochemical issues as the irreversibility of ion sorption and desorption, the bioavailability of subsurface contaminants, and the enrichment of trace metals in ore deposits, as well as the kinetics of mineral dissolution and/or precipitation.

More Details

Analysis of the Massive Salt Fall in Big Hill Cavern 103

Munson, Darrell E.; Munson, Darrell E.; Bauer, Stephen J.; Rautman, Christopher A.; Ehgartner, Brian L.; Sattler, Allan R.

This report summarizes recent reviews, observations, and analyses believed to be imperative to our understanding of the recent two million cubic feet salt fall event in Big Hill Cavern 103, one of the caverns of the Strategic Petroleum Reserve (SPR). The fall was the result of one or more stress driven mechanical instabilities, the origins of which are discussed in the report. The work has lead to important conclusions concerning the engineering and operations of the caverns at Big Hill. Specifically, Big Hill, being the youngest SPR site, was subjected to state-of-the-art solutioning methods to develop nominally well-formed, right-circular cylindrical caverns. Examination of the pressure history records indicate that operationally all Big Hill SPR caverns have been treated similarly. Significantly, new three-dimensional (3-D) imaging methods, applied to old (original) and more recent sonar survey data, have provided much more detailed views of cavern walls, roofs, and floors. This has made possible documentation of the presence of localized deviations from ''smooth'' cylindrical cavern walls. These deviations are now recognized as isolated, linear and/or planar features in the original sonar data (circa early 1990s), which persist to the present time. These elements represent either sites of preferential leaching, localized spalling, or a combination of the two. Understanding the precise origin of these phenomena remains a challenge, especially considering, in a historical sense, the domal salt at Big Hill was believed to be well-characterized. However, significant inhomogeneities in the domal salt that may imply abnormalities in leaching were not noted. Indeed, any inhomogeneities were judged inconsequential to the solution-engineering methods at the time, and, by the same token, to the approaches to modeling the rock mass geomechanical response. The rock mass was treated as isotropic and homogeneous, which in retrospect, appears to have been an over simplification. This analysis shows there are possible new opportunities regarding completing an appropriate site characterization for existing operating cavern fields in the SPR, as well as expansion of current sites or development of new sites. Such characterization should first be consistent with needs identified by this report. Secondly, the characterization needs to satisfy the input requirements of the 3-D solutioning calculational methods being developed, together with 3-D geomechanical analyses techniques which address deformation of a salt rock mass that contains inhomogeneities. It seems apparent that focusing on these important areas could preclude occurrence of unexpected events that would adversely impact the operations of SPR.

More Details

Blade Manufacturing Improvement: Remote Blade Manufacturing Demonstration

Ashwill, Thomas D.; Ashwill, Thomas D.

The objective of this program was to investigate manufacturing improvements for wind turbine blades. The program included a series of test activities to evaluate the strength, deflection, performance, and loading characteristics of the prototype blades. The original contract was extended in order to continue development of several key blade technologies identified in the project. The objective of the remote build task was to demonstrate the concept of manufacturing wind turbine blades at a temporary manufacturing facility in a rural environment. TPI Composites successfully completed a remote manufacturing demonstration in which four blades were fabricated. The remote demonstration used a manufacturing approach which relied upon material ''kits'' that were organized in the factory and shipped to the site. Manufacturing blades at the wind plant site presents serious logistics difficulties and does not appear to be the best approach. A better method appears to be regional manufacturing facilities, which will eliminate most of the transportation cost, without incurring the logistical problems associated with fabrication directly onsite. With this approach the remote facilities would use commonly available industrial infrastructure such as enclosed workbays, overhead cranes, and paved staging areas. Additional fatigue testing of the M20 root stud design was completed with good results. This design provides adhesive bond strength under fatigue loading that exceeds that of the fastener. A new thru-stud bonding concept was developed for the M30 stud design. This approach offers several manufacturing advantages; however, the test results were inconclusive.

More Details

Cooperative measures to mitigate Asia-Pacific maritime conflicts

Olsen, John N.

The economies of East Asia are predominantly export based and, therefore, place special emphasis on the security of the sea lines of communication (SLOCs). Due to economic globalization, the United States shares these concerns. Cooperative measures by the concerned parties could reduce the potential for disruption by maritime conflicts. Primary threats against the SLOCs are disputes over the resources under the seas, disputes over some small island groups, disputes between particular parties (China-Taiwan and North-South Korea), or illegal activities like smuggling, piracy, or terrorism. This paper provides an overview on these threats, issue by issue, to identify common elements and needed cooperation. Cooperation on other topics such as search and rescue, fisheries protection, and oil spill response may help support improved relations to prevent maritime conflicts. Many technologies can help support maritime cooperation, including improved communications links, tracking and emergency beacon devices, and satellite imaging. Appropriate technical and political means are suggested for each threat to the SLOCs.

More Details

Laser Safety Audit and Inventory System Database

Augustoni, Arnold L.; Augustoni, Arnold L.

A laser safety auditing and inventory system has been in use at Sandia National Laboratories--Albuquerque for the past five years and has recently been considered for adoption by Sandia National Laboratories--Livermore. The system utilizes the ''Microsoft Access'' database application, part of the Office 2000 software package. Audit and inventory data is available on-line for ready access by laser users. Data is updated weekly to provide users with current information relating to laser facility audits and laser inventories.

More Details

Comparison of wavelength splitting for selectively oxidized, ion implanted, and hybrid vertical-cavity surface-emitting lasers

IEEE Journal of Quantum Electronics

Young, E.W.; Choquette, Kent D.; Seurin, Jean F.; Chuang, Shun L.; Geib, K.M.; Allerman, A.A.

The wavelength splitting between the LP01 and LP11 modes of selectively oxidized, ion implanted, and hybrid ion implanted/selectively oxidized vertical-cavity surface-emitting lasers is studied by experiment and theory. Measured splittings at threshold show marked differences between the different laser structures due to the effects of index guiding and thermal lensing. Theoretical results were obtained using a vector optical mode solver and show good agreement with experimental results. The hybrid lasers exhibited behavior intermediate between the ion implanted and selectively oxidized lasers and could be optimized for high power single transverse mode emission.

More Details

Cost Study for Large Wind Turbine Blades

Ashwill, Thomas D.; Ashwill, Thomas D.

The cost study for large wind turbine blades reviewed three blades of 30 meters, 50 meters, and 70 meters in length. Blade extreme wind design loads were estimated in accordance with IEC Class I recommendations. Structural analyses of three blade sizes were performed at representative spanwise stations assuming a stressed shell design approach and E-glass/vinylester laminate. A bill of materials was prepared for each of the three blade sizes using the laminate requirements prepared during the structural analysis effort. The labor requirements were prepared for twelve major manufacturing tasks. TPI Composites developed a conceptual design of the manufacturing facility for each of the three blade sizes, which was used for determining the cost of labor and overhead (capital equipment and facilities). Each of the three potential manufacturing facilities was sized to provide a constant annual rated power production (MW per year) of the blades it produced. The cost of the production tooling and overland transportation was also estimated. The results indicate that as blades get larger, materials become a greater proportion of total cost, while the percentage of labor cost is decreased. Transportation costs decreased as a percentage of total cost. The study also suggests that blade cost reduction efforts should focus on reducing material cost and lowering manufacturing labor, because cost reductions in those areas will have the strongest impact on overall blade cost.

More Details

ACME: Algorithms for Contact in a Multiphysics Environment API Version 1.3

Brown, Kevin H.; Brown, Kevin H.; Voth, Thomas E.; Glass, Micheal W.; Gullerud, Arne S.; Heinstein, Martin W.; Jones, Reese E.

An effort is underway at Sandia National Laboratories to develop a library of algorithms to search for potential interactions between surfaces represented by analytic and discretized topological entities. This effort is also developing algorithms to determine forces due to these interactions for transient dynamics applications. This document describes the Application Programming Interface (API) for the ACME (Algorithms for Contact in a Multiphysics Environment) library.

More Details

Autonomic Healing of Epoxy Using Micro-Encapsulated Dicyclopentadiene

Giunta, Rachel K.; Thoma, Steven T.; Giunta, Rachel K.; Stavig, Mark E.; Emerson, John A.; Morales, Alfredo M.

The autonomic healing ability of an epoxy adhesive containing micro-encapsulated dicyclopentadiene (DCPD) was evaluated. The epoxy resin used was Epon 828 cured with either Versamid 140 or diethylenetriamine (DETA). Variables included total weight percent of microcapsules (MCs) and catalyst, as well as the catalyst to DCPD ratio. The degree of healing was determined by the fracture toughness before and after ''healing'' using double-cantilever beam analysis. It was found that the degree of self-healing was most directly related to the contact area (i.e. crack width) during healing. Temperature also played a significant role. Observed differences between the results of this study and those in literature are discussed.

More Details

Process-Based Quality Tools to Verify Cleaning and Surface Preparation

Giunta, Rachel K.; Emerson, John A.; Giunta, Rachel K.; Reedy, Earl D.; Adams, David P.; Lemke, Paul A.; Moody, Neville R.

A test method, the Tensile Brazil Nut Sandwich (TBNS) specimen, was developed to measure mixed-mode interfacial toughness of bonded materials. Interfacial toughness measured by this technique is compared to the interfacial toughness of thin film adhesive coatings using a nanoindentation technique. The interfacial toughness of solvent-cast and melt-spun adhesive thin films is compared and found to be similar. Finally, the Johnson-Kendall-Roberts (JKR) technique is used to evaluate the cleanliness of aluminum substrates.

More Details

Review of Test Facilities for Distributed Energy Resources

Akhil, Abbas A.; Akhil, Abbas A.

Since initiating research on integration of distributed energy resources (DER) in 1999, the Consortium for Electric Reliability Technology Solutions (CERTS) has been actively assessing and reviewing existing DER test facilities for possible demonstrations of advanced DER system integration concepts. This report is a compendium of information collected by the CERTS team on DER test facilities during this period.

More Details

An Exploration in Implementing Fault Tolerance in Scientific Simulation Application Software

Drake, Richard R.; Drake, Richard R.; Summers, Randall M.

The ability for scientific simulation software to detect and recover from errors and failures of supporting hardware and software layers is becoming more important due to the pressure to shift from large, specialized multi-million dollar ASCI computing platforms to smaller, less expensive interconnected machines consisting of off-the-shelf hardware. As evidenced by the CPlant{trademark} experiences, fault tolerance can be necessary even on such a homogeneous system and may also prove useful in the next generation of ASCI platforms. This report describes a research effort intended to study, implement, and test the feasibility of various fault tolerance mechanisms controlled at the simulation code level. Errors and failures would be detected by underlying software layers, communicated to the application through a convenient interface, and then handled by the simulation code itself. Targeted faults included corrupt communication messages, processor node dropouts, and unacceptable slowdown of service from processing nodes. Recovery techniques such as re-sending communication messages and dynamic reallocation of failing processor nodes were considered. However, most fault tolerance mechanisms rely on underlying software layers which were discovered to be lacking to such a degree that mechanisms at the application level could not be implemented. This research effort has been postponed and shifted to these supporting layers.

More Details

Deployment of a Continuously Operated {mu}ChemLab

Adkins, Douglas R.; Kottenstette, Richard K.; Lewis, Patrick R.; Dulleck, George R.; Oborny, Michael C.; Gordon, Susanna P.; Foltz, Greg W.

A continuously operating prototype chemical weapons sensor system based on the {mu}ChemLab{trademark} technology was installed in the San Francisco International Airport in late June 2002. This prototype was assembled in a National Electric Manufacturers Association (NEMA) enclosure and controlled by a personal computer collocated with it. Data from the prototype was downloaded regularly and periodic calibration tests were performed through modem-operated control. The instrument was installed just downstream of the return air fans in the return air plenum of a high-use area of a boarding area. A CW Sentry, manufactured by Microsensor Systems, was installed alongside the {mu}ChemLab unit and results from its operation are reported elsewhere. Tests began on June 26, 2002 and concluded on October 16, 2002. This report will discuss the performance of the prototype during the continuous testing period. Over 70,000 test cycles were performed during this period. Data from this first field emplacement have indicated several areas where engineering improvements can be made for future field emplacement.

More Details

Experimental observation of plasma formation and current transfer in fine wire expansion experiments

Deeney, Christopher D.; Sinars, Daniel S.

When several kA pulses are passed through single, fine 25 {micro}m diameter wires, the wire material heats, melts, vaporizes and expands. Initially the voltage across--and current through--a wire increases until an abrupt voltage collapse occurs. After this collapse the voltage remains at a relative small value while the current continues to increase. In order to understand how this early time behavior may affect the subsequent implosion, small-scale experiments at Cornell University's Laboratory of Plasma Studies concentrated on diagnosing expanding single wire dynamics. X-ray backlighting, interferometry and Schlieren imaging as well as current and voltage measurements have been employed. The voltage collapse has been attributed to the formation of plasma around the wire and a transfer of current to this highly conducting coronal plasma. Interferometry has confirmed the plasma formation, but the current transfer has only been postulated. Subsequent experiments on the Z-Facility at Sandia National Laboratories have produced impressive x-ray yields etc.

More Details

Effect of Dielectric Photoemission on Surface Breakdown: An LDRD Report

Jorgenson, Roy E.; Jorgenson, Roy E.; Warne, Larry K.

The research discussed in this report was conceived during our earlier attempts to simulate breakdown across a dielectric surface using a Monte Carlo approach. While cataloguing the various ways that a dielectric surface could affect the breakdown process, we found that one obvious effect--photoemission from the surface--had been ignored. Initially, we felt that inclusion of this effect could have a major impact on how an ionization front propagates across a surface because of the following argument chain: (1) The photon energy required to release electrons from a surface via photoemission is less than the photon energy required to ionize gas molecules directly. (2) The mean free path of a photon in gas is longer for low-energy photons than for high-energy photons. (3) Photoionization is a major effect in advancing the ionization front for breakdown in gas without a surface, therefore, we know that even high-energy photons can be released from the head of a streamer and propagate some distance through the gas. Our hypothesis, therefore, was that photons with energies near the threshold of photoemission could travel further in front of the streamer before being absorbed than higher-energy photons needed for photoionization, yet the lower-energy photons, with the help of the surface, could still create seed electrons for new avalanches. Thus, the streamer would advance more rapidly next to a surface than in gas alone. Additionally, the photoemission from the surface would add to the electrons in the avalanche and cause the avalanche to grow faster. After some study, however, we are forced to conclude that although photoemission does contribute to avalanche growth at fields near breakdown threshold, secondary electron emission causes electrons to stick to the surface and cancels out the growth due to photoemission. This conclusion assumes a discharge that occurs over a short period of time so that charging of the surface, which could alter its secondary electron emission characteristics, does not occur. This report documents the numerical work we did on investigating this effect and the experimental work we did on pre-breakdown phenomena in gas.

More Details

Hall-Petch relationship in pulsed laser deposited nickel films

Proposed for publication in Journal of Materials Research.

Knapp, J.A.; Follstaedt, D.M.

Thin-film mechanical properties can be measured using nanoindentation combined with detailed finite element modeling. This technique was used for a study of very fine grained Ni films, formed using pulsed-laser deposition on fused silica, sapphire, and Ni substrates. The grain sizes in the films were characterized by electron microscopy, and the mechanical properties were determined by ultra-low load indentation, analyzed using finite element modeling to separate the mechanical properties of the thin layers from those of the substrates. Some Ni films were deposited at high temperature or annealed after deposition to enlarge the grain sizes. The observed hardnesses and grain sizes in these thin Ni films are consistent with the empirical Hall-Petch relationship for grain sizes ranging from a few micrometers to as small as 10 nm, suggesting that deformation occurs preferentially by dislocation movement even in such nanometer-size grains.

More Details

Characterizing gaseous flow in submicron chromatography columns

Wong, Chungnin C.

Enormous interest exists to develop the next generation of an integrated microsystem for chemical and biological analysis ({mu}ChemLab{trademark}) and to further reduce the volume of the system. One approach is to scale down the size of critical components and to explore any pumping mechanism that can minimize the power requirement. Since the majority of the pumping requirement is to overcome the wall resistance in the gas chromatography (GC) column, our attention is to study the gas flow in this GC column. As the column dimension decreases, the gaseous flow will go from a continuum regime into a non-continuum regime; i.e., slip, transition, and free molecular regimes. Thus it is very important to well characterize the gaseous flow in submicron columns and to understand its flow behavior. Specifically, in this study, our focus is to investigate the effects of viscosity, rarefaction, and compressibility as the column dimension decreases. Both theoretical predictions and experimental results will be presented.

More Details

Unusual aryl-porphyrin rotational barriers in peripherally crowded porphyrins

Inorganic Chemistry

Medforth, Craig J.; Haddad, Raid E.; Muzzi, Cinzia M.; Dooley, Neal R.; Jaquinod, Laurent; Shyr, David C.; Nurco, Daniel J.; Olmstead, Marilyn M.; Smith, Kevin M.; Ma, Jian G.; Shelnutt, John A.

Previous studies of 5,10,15,20-tetraarylporphyrins have shown that the barrier for meso aryl-porphyrin rotation (ΔG‡ROT)) varies as a function of the core substituent M and is lower for a small metal (M = Ni) compared to a large metal (M = Zn) and for a dication (M = 4H2+) versus a free base porphyrin (M = 2H). This has been attributed to changes in the nonplanar distortion of the porphyrin ring and the deformability of the macrocycle caused by the core substituent. In the present work, X-ray crystallography, molecular mechanics (MM) calculations, and variable temperature (VT) 1H NMR spectroscopy are used to examine the relationship between the arylporphyrin rotational barrier and the core substituent M in some novel 2,3,5,7,8,10,12,13,15,17,18,20-dodecaarylporphyrins (DArPs), and specifically in some 5,10,15,20-tetraaryl-2,3,7,8,12,13,17,18-octaphenylporphyrins (TArOPPs), where steric crowding of the peripheral groups always results in a very nonplanar macrocycle. X-ray structures of DArPs indicate differences in the nonplanar conformation of the macrocycle as a function of M, with saddle conformations being observed for M = Zn, 2H or M = 4H2+ and saddle and/or ruffle conformations for M = Ni. VT NMR studies show that the effect of protonation in the TArOPPs is to increase ΔG‡ROT, which is the opposite of the effect seen for the TArPs, and MM calculations also predict a strikingly high barrier for the TArOPPs when M = 4H2+. These and other findings suggest that the aryl-porphyrin rotational barriers in the DArPs are closely linked to the deformability of the macrocycle along a nonplanar distortion mode which moves the substituent being rotated out of the porphyrin plane.

More Details

Land Transport Emergency Response Technology Report

Dotson, Lori J.; Pierce, Jim D.

Sandia National Laboratories was tasked by the Japan Nuclear Cycle Development Institute (JNC) to provide assistance in developing an emergency response plan for radioactive material transportation activities. Those tasks included compiling radioactive materials (RAM) transportation accident data from the open literature and databases, investigating emergency response plans for radioactive materials transport in the United States, and developing specific recommendations for the JNC' nuclear material transport emergency response plan, based on information gathered during the first two tasks. These recommendations include developing a RAM database, a public transparency Internet website, an emergency response infrastructure designed specifically for transportation needs, and a clear set of directives to provide authority in the case of transportation accidents or incidents involving RAM.

More Details

Examination of Risk Analysis Methods for MOX Land Transport in Japan

Pierce, Jim D.; Hohnstreiter, Glenn F.; Pierce, Jim D.

This report presents background information and methodology for a risk assessment of mixed oxide (MOX) reactor fuel transport in the nation of Japan to support their nuclear energy program. This work includes an extensive literature review, a review of other MOX activities worldwide, a survey of the statutory requirements for transporting nuclear materials, a discussion of risk assessment methodology, and calculation results for specific examples. Typical risk evaluations are given to provide guidance for later risk analyses specific to MOX fuel transport in Japan. This report also includes specific information that will be required for routes, cask types, accident-rate statistics, and population densities along specified routes, along with other detailed information needed for risk analysis studies pertinent to MOX transport in Japan. This information will be used in future specific risk studies.

More Details

Chemically selective NMR imaging of a 3-component (solid-solid-liquid) sedimenting system

Journal of Magnetic Resonance

Beyea, Steven D.; Altobelli, Stephen A.; Mondy, L.A.

A novel magnetic resonance imaging (MRI) technique which resolves the separate components of the evolving vertical concentration profiles of 3-component non-colloidal suspensions is described. This method exploits the sensitivity of MRI to chemical differences between the three phases to directly image the fluid phase and one of the solid phases, with the third phase obtained by subtraction. 19F spin-echo imaging of a polytetrafluoroethylene (PTFE) oil was interlaced with 1H SPRITE imaging of low-density polyethylene (LDPE) particles. The third phase was comprised of borosilicate glass spheres, which were not visible while imaging the PTFE or LDPE phases. The method is demonstrated by performing measurements on 2-phase materials containing only the floating (LDPE) particles, with the results contrasted to the experimental behaviour of the individual phases in the full 3-phase system. All experiments were performed using nearly monodisperse particles, with initial suspension volume fractions, φi, of 0.1. © 2003 Elsevier Science (USA). All rights reserved.

More Details

South Asia transboundary water quality monitoring workshop summary report

Betsill, J.D.; Rajen, Gaurav R.; Luetters, Frederick O.

The Cooperative Monitoring Center (CMC) promotes collaborations among scientists and researchers in several regions as a means of achieving common regional security objectives. To promote cooperation in South Asia on environmental research, an international working group made up of participants from Bangladesh, India, Nepal, Pakistan, and the United States convened in Kathmandu, Nepal, from February 17-23,2002. The workshop was held to further develop the South Asia Transboundary Water Quality Monitoring (SATWQM) project. The project is sponsored in part by the CMC located at Sandia National Laboratories in Albuquerque, New Mexico through funding provided by the US. Department of State, Regional Environmental Affairs Office, American Embassy, Kathmandu, Nepal, and the National Nuclear Security Administration's (NNSA) Office of Nonproliferation and National Security. This report summarizes the SATWQM project, the workshop objectives, process and results. The long-term interests of the participants are to develop systems for sharing regional environmental information as a means of building confidence and improving relations among South Asian countries. The more immediate interests of the group are focused on activities that foster regional sharing of water quality data in the Ganges and Indus River basins. Issues of concern to the SATWQM network participants include studying the impacts from untreated sewage and industrial effluents, agricultural run-off, salinity increases in fresh waters, the siltation and shifting of river channels, and the environmental degradation of critical habitats such as wetlands, protected forests, and endangered aquatic species conservation areas. The workshop focused on five objectives: (1) a deepened understanding of the partner organizations involved; (2) garnering the support of additional regional and national government and non-government organizations in South Asia involved in river water quality monitoring; (3) identification of sites within the region at which water quality data are to be collected; (4) instituting a data and information collection and sharing process; and, (5) training of partners in the use of water quality monitoring equipment.

More Details

Sandia National Laboratories ASCI Applications Software Quality Engineering Practices

Zepper, John D.; Zepper, John D.; Aragon, Kathryn M.; Minana, Molly A.; Byle, K.A.; Eaton, Donna S.

This document provides a guide to the deployment of the software verification activities, software engineering practices, and project management principles that guide the development of Accelerated Strategic Computing Initiative (ASCI) applications software at Sandia National Laboratories (Sandia). The goal of this document is to identify practices and activities that will foster the development of reliable and trusted products produced by the ASCI Applications program. Document contents include an explanation of the structure and purpose of the ASCI Quality Management Council, an overview of the software development lifecycle, an outline of the practices and activities that should be followed, and an assessment tool.

More Details

Laser Hazard Analysis for Ultra-Fast Sub-Nanosecond, Mode-Locked Near Infrared Lasers Operated with Pulse Repetition Frequencies Above the Critical Frequency

Augustoni, Arnold L.; Augustoni, Arnold L.

Ultra fast, sub-nanosecond (picosecond to femtosecond) duration, laser pulses present unique challenges when performing laser safety analysis involving mode-locked lasers, which operate at pulse repetition frequencies above the critical frequency in the near infrared wavelength bands. Two specific cases are presented, one such case that agrees and one that disagrees with the general rule on critical frequency. The results show that in all cases the appropriate maximum permissible exposure is always the smallest of the values calculated from ANSI rule 1, 2 and 3.

More Details

Cavity Expansion: A Library for Cavity Expansion Algorithms, Version 1.0

Koteras, James R.; Brown, Kevin H.; Koteras, James R.; Longcope, Donald B.; Warren, Thomas L.

Cavity expansion is a method for modeling the penetration of an axisymmetric or wedge-shaped solid body--a penetrator--into a target by using analytic expressions to capture the effects of the target on the body. Cavity expansion has been implemented as a third-party library (CavityExpansion) that can be used with explicit, transient dynamics codes. This document describes the mechanics of the cavity expansion model implemented as a third-party library. This document also describes the applications interface to CavityExpansion. A set of regression tests has been developed that can be used to test the implementation of CavityExpansion in a transient dynamics code. The mechanics of these tests and the expected results from the tests are described in detail.

More Details

Presto User's Guide Version 1.05

Koteras, James R.; Koteras, James R.; Gullerud, Arne S.; Gullerud, Arne S.

Presto is a Lagrangian, three-dimensional explicit, transient dynamics code for the analysis of solids subjected to large, suddenly applied loads. Presto is designed for problems with large deformations, nonlinear material behavior, and contact. There is a versatile element library incorporating both continuum and structural elements. The code is designed for a parallel computing environment. This document describes the input for the code that gives users access to all of the current functionality in the code. Presto is built in an environment that allows it to be coupled with other engineering analysis codes. The input structure for the code, which uses a concept called scope, reflects the fact that Presto can be used in a coupled environment. This guide describes the scope concept and the input from the outermost to the innermost input scopes. Within a given scope, the descriptions of input commands are grouped based on code functionality. For example, all material input command lines are described in a section of the user's guide for all of the material models in the code.

More Details

The Navruz Project: Transboundary Monitoring for Radionuclides and Metals in Central Asia Rivers. Data Report

Passell, Howard D.; Barber, David S.; Betsill, J.D.; Littlefield, Adriane L.; Matthews, Robert F.; Mohagheghi, Amir H.; Shanks, Sonoya T.

The Navruz Project is a cooperative, transboundary, river monitoring project involving rivers and institutions in Kazakhstan, Kyrgyzstan, Tajikistan, and Uzbekistan, and facilitated by Sandia National Laboratories in the U.S. The Navruz Project focuses on waterborne radionuclides and metals because of their importance to public health and nuclear materials proliferation concerns in the region. The Project also collects data on basic water quality parameters. Data obtained in this project are shared among all participating countries and the public through a world-wide web site (http://www.cmc.sandia.org/Central/centralasia.html), and are available for use in further studies and in regional transboundary water resource management efforts. This report includes graphs showing selected data from the Fall 2000 and Spring 2001 sampling seasons. These data include all parameters grouped into six regions, including main rivers and some tributaries in the Amu Darya and Syr Darya river systems. This report also assembles all data (in tabular form) generated by the project from Fall 2000 through Fall 2001. This report comes as the second part of a planned three-part reporting process. The first report is the Sampling and Analysis Plan and Operational Manual, SAND 2002-0484. This is the second report.

More Details

Final Report: CNC Micromachines LDRD No.10793

Jokiel, Bernhard J.; Benavides, Gilbert L.; Bieg, Lothar F.; Allen, James J.

The three-year LDRD ''CNC Micromachines'' was successfully completed at the end of FY02. The project had four major breakthroughs in spatial motion control in MEMS: (1) A unified method for designing scalable planar and spatial on-chip motion control systems was developed. The method relies on the use of parallel kinematic mechanisms (PKMs) that when properly designed provide different types of motion on-chip without the need for post-fabrication assembly, (2) A new type of actuator was developed--the linear stepping track drive (LSTD) that provides open loop linear position control that is scalable in displacement, output force and step size. Several versions of this actuator were designed, fabricated and successfully tested. (3) Different versions of XYZ translation only and PTT motion stages were designed, successfully fabricated and successfully tested demonstrating absolutely that on-chip spatial motion control systems are not only possible, but are a reality. (4) Control algorithms, software and infrastructure based on MATLAB were created and successfully implemented to drive the XYZ and PTT motion platforms in a controlled manner. The control software is capable of reading an M/G code machine tool language file, decode the instructions and correctly calculate and apply position and velocity trajectories to the motion devices linear drive inputs to position the device platform along the trajectory as specified by the input file. A full and detailed account of design methodology, theory and experimental results (failures and successes) is provided.

More Details

Mass Spectrometric Calibration of Controlled Fluoroform Leak Rate Devices: Technique and Uncertainty Analysis

Balsley, Steven D.; Balsley, Steven D.; Browning, J.F.; Mehrhoff, Carol A.

Controlled leak rate devices of fluoroform on the order of 10{sup -8} atm {center_dot} cc sec{sup -1} at 25 C are used to calibrate QC-1 War Reserve neutron tube exhaust stations for leak detection sensitivity. Close-out calibration of these tritium-contaminated devices is provided by the Gas Dynamics and Mass Spectrometry Laboratory, Organization 14406, which is a tritium analytical facility. The mass spectrometric technique used for the measurement is discussed, as is the first principals calculation (pressure, volume, temperature and time). The uncertainty of the measurement is largely driven by contributing factors in the determination of P, V and T. The expanded uncertainty of the leak rate measurement is shown to be 4.42%, with a coverage factor of 3 (k=3).

More Details

Experimental Investigations of an Inclined Lap-Type Bolted Joint

Gregory, Danny L.; Gregory, Danny L.; Resor, Brian R.; Coleman, Ronald G.; Smallwood, David O.

The dynamic response of critical aerospace components is often strongly dependent upon the dynamic behavior of bolted connections that attach the component to the surrounding structure. These bolted connections often provide the only structural load paths to the component. The bolted joint investigated in this report is an inclined lap-type joint with the interface inclined with respect to the line of action of the force acting on the joint. The accurate analytical modeling of these bolted connections is critical to the prediction of the response of the component to normal and high-level shock environmental loadings. In particular, it is necessary to understand and correctly model the energy dissipation (damping) of the bolted joint that is a nonlinear function of the forces acting on the joint. Experiments were designed and performed to isolate the dynamics of a single bolted connection of the component. Steady state sinusoidal and transient experiments were used to derive energy dissipation curves as a function of input force. Multiple assemblies of the bolted connection were also observed to evaluate the variability of the energy dissipation of the connection. These experiments provide insight into the complex behavior of this bolted joint to assist in the postulation and development of reduced order joint models to capture the important physics of the joint including stiffness and damping. The experiments are described and results presented that provide a basis for candidate joint model calibration and comparison.

More Details

Hyperveolcity impacts on aluminum from 6 to 11 km/s for hydrocode benchmarking

Chhabildas, Lalit C.; Reinhart, William D.; Thornhill, Tom F.; Bessette, Gregory B.; Saul, W.V.; Lawrence, R.J.; Kipp, Marlin E.

A systematic computational and experimental study is presented on impact generated debris resulting from record-high impact speeds recently achieved on the Sandia three-stage light-gas gun. In these experiments, a target plate of aluminum is impacted by a titanium-alloy flyer plate at speeds ranging from 6.5 to 11 km/s, producing pressures from 1 Mb to over 2.3 Mb, and temperatures as high as 15000 K (>1 eV). The aluminum plate is totally melted at stresses above 1.6 Mb. Upon release, the thermodynamic release isentropes will interact with the vapor dome. The amount of vapor generated in the debris cloud will depend on many factors such as the thickness of the aluminum plate, super-cooling, vaporization kinetics, the distance, and therefore time, over which the impact-generated debris is allowed to expand. To characterize the debris cloud, the velocity history produced by stagnation of the aluminum expansion products against a witness plate is measured using velocity interferometry. X-ray measurements of the debris cloud are also recorded prior to stagnation against an aluminum witness plate. Both radiographs and witness-plate velocity measurements suggest that the vaporization process is both time-dependent and heterogeneous when the material is released from shocked states around 230 GPa. Experiments suggest that the threshold for vaporization kinetics in aluminum should become significant when expanded from shocked states over 230 GPa. Numerical simulations are conducted to compare the measured x-ray radiographs of the debris cloud and the time-resolved experimental interferometer record with calculational results using the 3-D hydrodynamic wavecode, CTH. Results of these experiments and calculations are discussed in this paper.

More Details

Final Report on LDRD Project: High-Bandwidth Optical Data Interconnects for Satellite Applications

Sanchez, Victoria S.; Sullivan, Charles T.; Allerman, A.A.; Rienstra, Jeffrey L.; Serkland, Darwin K.; Geib, K.M.; Blansett, Ethan B.; Karpen, Gary D.; Peake, Gregory M.; Hargett, Terry H.

This report describes the research accomplishments achieved under the LDRD Project ''High-Bandwidth Optical Data Interconnects for Satellite Applications.'' The goal of this LDRD has been to address the future needs of focal-plane-array (FPA) sensors by exploring the use of high-bandwidth fiber-optic interconnects to transmit FPA signals within a satellite. We have focused primarily on vertical-cavity surface-emitting laser (VCSEL) based transmitters, due to the previously demonstrated immunity of VCSELs to total radiation doses up to 1 Mrad. In addition, VCSELs offer high modulation bandwidth (roughly 10 GHz), low power consumption (roughly 5 mW), and high coupling efficiency (greater than -3dB) to optical fibers. In the first year of this LDRD, we concentrated on the task of transmitting analog signals from a cryogenic FPA to a remote analog-to-digital converter. In the second year, we considered the transmission of digital signals produced by the analog-to-digital converter to a remote computer on the satellite. Specifically, we considered the situation in which the FPA, analog-to-digital converter, and VCSEL-based transmitter were all cooled to cryogenic temperatures. This situation requires VCSELs that operate at cryogenic temperature, dissipate minimal heat, and meet the electrical drive requirements in terms of voltage, current, and bandwidth.

More Details

Computer Science Research Institute 2002 Annual Report of Activities

Womble, David E.; Womble, David E.; Delap, Barbara J.; Ceballos, Deanna R.

This report summarizes the activities of the Computer Science Research Institute (CSRI) at Sandia National Laboratories during the period January 1, 2002 to December 31, 2002. During this period the CSRI hosted 172 visitors representing 95 universities, companies or laboratories. Of these 56 were summer students or faculty. The CSRI also organized and hosted five workshops with 171 participants. Of these 94 attendees were from 64 universities, companies or laboratories, and 77 were from Sandia. Finally, the CSRI sponsored 14 long-term collaborative research projects.

More Details

Growth and Characterization of Quantum Dots and Quantum Dots Devices

Cederberg, Jeffrey G.; Cederberg, Jeffrey G.; Biefeld, Robert M.; Chow, Weng W.

Quantum dot nanostructures were investigated experimentally and theoretically for potential applications for optoelectronic devices. We have developed the foundation to produce state-of-the-art compound semiconductor nanostructures in a variety of materials: In(AsSb) on GaAs, GaSb on GaAs, and In(AsSb) on GaSb. These materials cover a range of energies from 1.2 to 0.7 eV. We have observed a surfactant effect in InAsSb nanostructure growth. Our theoretical efforts have developed techniques to look at the optical effects induced by many-body Coulombic interactions of carriers in active regions composed of quantum dot nanostructures. Significant deviations of the optical properties from those predicted by the ''atom-like'' quantum dot picture were discovered. Some of these deviations, in particular, those relating to the real part of the optical susceptibility, have since been observed in experiments.

More Details
Results 87601–87800 of 96,771
Results 87601–87800 of 96,771